摘要:
The contacting device for countercurrent contacting of fluid streams and having a first pair of intersecting grids of spaced-apart and parallel deflector blades and a second pair of intersecting grids of spaced-apart and parallel deflector blades. The deflector blades in each one of the grids are interleaved with the deflector blades in the paired intersecting grid and may have uncut side portions that join them together along a transverse strip where the deflector blades cross each other and cut side portions that extend from the uncut side portions to the ends of the deflector blades. At least some of the deflector blades have directional tabs and associated openings to allow portions of the fluid streams to pass through the deflector blades to facilitate mixing of the fluid streams.
摘要:
A method and a system for phase inversion of a dispersion are disclosed, the dispersion comprising a first fluid, said first fluid forming a disperse phase and a second fluid, said second fluid forming a continuous phase. The dispersion is supplied in a fluid supply device to a phase inversion means. Thereby the first fluid is transformed from the disperse phase into the continuous phase and the second fluid is transformed from the continuous phase into the disperse phase. The phase inversion means comprises an element providing a fluid contacting surface for coalescence in a direction of flow.
摘要:
A static mixer includes a series of mixing elements, at least some of which are a double wedge mixing baffle. The double wedge mixing baffle includes first and second dividing panels oriented transverse to each other, first and second deflecting surfaces projecting from opposite sides of the first dividing panel, and third and fourth deflecting surfaces projecting from opposite sides of the second dividing panel. One or each of the deflecting surfaces includes first and second planar surfaces arranged at different angles relative to the fluid flow. The double wedge arrangement reduces retained waste volume within the mixer while further manipulating the flow characteristics of fluid flow entering and exiting the mixing baffle, to thereby optimize mixing performance.
摘要:
A static mixing device for use within an open channel includes a mixing section with at least one set of stationary mixing vane members. The vane members are supported within a mixing section and include a plate member having a base edge supported by the base member, the plate member including an upstanding oblong tab with a leading edge extending upwardly and rearward from a forward corner of the base edge to a plate peak, the leading edge connecting with a curved trailing edge, the trailing edge extending downwardly and rearward to a rear corner of the base edge and a mixing cap supported on the trailing edge to promote mixing of the fluids within the fluid channel. The mixing device also includes an injection nozzle positioned upstream of the at least one vane member, at approximately the plate peak and operatively constructed to transport additives into the stream of fluid flow.
摘要:
A mixing device comprising three mixing assemblies and first and second horizontal inlet arms, wherein the mixing assemblies are arranged horizontally on a frame, with one mixing assembly on the bottom, one on the top, and one in the middle of the other two mixing assemblies. Each mixing assembly comprises a first housing, a second housing, and a swedge. In a preferred embodiment, the ratio of the inside diameter of the first housing to the inside diameter of the second housing is 1:2, the change in diameter between the first and second housing is abrupt, and the first housing extends into the second housing by a certain distance. Inside the first housing are an inlet agitator and injection nozzle, and inside the second housing is a static mixer. The injection nozzle is located proximate to the point at which the change in diameter occurs between the first and second housing.
摘要:
A baffle includes a body member having a first surface, a second opposed surface, and an outer peripheral edge. An aperture may be formed through the body member so as to define an inner peripheral edge. The inner peripheral edge is distorted so as to be non-planar. An apparatus includes a first conduit having a first end, a second end, and a first channel extending therebetween. At least one baffle is disposed in the first channel and includes a body member having a first surface, a second opposed surface, and an outer peripheral edge. At least one aperture may be formed through the body member to define an inner peripheral edge. The inner peripheral edge is distorted so as to be non-planar. A second conduit may be disposed inside the first conduit and extend through the aperture in the baffle. The apparatus may, for example, be configured as an ultraviolet light reactor, a heat exchanger, or a static mixer.
摘要:
A fluid contactor is taught for mixing and reacting of fluids. Mixing is enhanced by providing a suitable residence time and suitable surface area contact by forming eddy flow within the fluid and thereby the formation of vortexes. Such a contactor does not require the use of mechanical mixers. The contact chamber of the present invention can enhance chemical modification by use of chemical modifiers such as ultraviolet lamps, by allowing the positioning of such modifiers adjacent the vortexes.
摘要:
The component (1) for a static mixer(100) is manufactured by cutting and forming or by stamping out of a planar material strip (10). It extends in a longitudinal direction (11) given by the material strip. The component has transverse segments (2) arranged at intervals transversely to the longitudinal direction (11) that lie in a central plane (12) of the component (1) after forming or stamping. Strip fields (30) are located between the transverse segments (2), correspond to a line pattern made by the cutting or stamping and include longitudinal strips (3), i.e. strips (3) extending in a longitudinal direction. The transverse widths of the strips can be variable. For each strip, half-strips (7, 8′; 8, 7′) can be respectively distinguished with respect to the central region (6) of the strip field. The half-strips are bent out of the central plane (12) by the forming or stamping, and each form a bending edge with respect to the transverse segments (2) at the base lines (32).
摘要:
The invention relates to a static mixer (1) having a cylindrical mixer channel formed by a mixer channel housing (5) and a multistage mixer-wing element (3) which is arranged in said mixer channel and used for mixing layers of a hardening accelerator paste into a flow of highly viscous PU. Discharge openings (7) are provided in the inlet area of the static mixer. Said discharge openings introduce a partial flow of hitherto unmixed highly viscous PU into secondary channels (6) arranged parallel to the mixer channel. The secondary channels are connected to feeder openings (8) arranged in the wall of the mixer channel downstream from the mixer wing element (3) when seen in the direction of flow. The unmixed PU is guided in the secondary channels (6) and enters the outer area of the flow emanating from the mixer wing element via the feeder openings where the mixed layers of hardening accelerator paste are contained. The mixed flow is covered with a layer of unmixed PU to prevent layers of hardening accelerator paste from being discharged from an adhesive element applied with the aid of the mixer (1) and to prevent the occurrence of adhesive defects resulting therefrom.
摘要:
The present invention concerns a static mixing element (1) having a mixing channel (2) of substantially tubular shape which is undivided in axial direction and swirl vanes (4a, 4A, 4b, 4B) which are arranged beside each other and axially one after another in said mixing channel (2) and which radially abut on the inner wall of said mixing channel (2) and are, in this area, interconnected with said inner wall. Even in case of mixing very viscous components resp. mixing components at high flow rates, in which cases the forces applied by the flowing components to the swirl vanes (4a, 4A, 4b, 4B) are quite huge, the correct axial position of the swirl vanes, in particular in the entry area of the mixing element (1), can be assured. Especially for long mixing elements (1), this leads, under the before mentioned conditions, to a considerable improvement in mixing quality.