Abstract:
A dispensing apparatus includes two cylindrical sleeves, two flexible film pack bags disposed within the sleeves, the two film pack bags having an integrally formed rigid face plate bonded therewith, the face plate having a discharge nosepiece integrally formed therewith, the discharge nosepiece having a partition internally configured to maintain separate flow streams from the film pack bags. Two shuttles are slidingly disposed in the sleeves. Push rods are disposed in operable communication with the shuttles. At least one piston is disposed in operable communication with the push rods, the piston configured to drive the push rods. A holder is disposed proximate a front end of the sleeves, the holder configured to restrain the face plate during dispensing of a flowable material. A mixer is configured to be in fluid communication with flow streams from the film pack bags. A material applicator is disposed in fluid communication with the mixer.
Abstract:
One example of the present disclosure relates to a daubing device for applying viscous material to a fastener. The daubing device comprises a housing comprising a first internal face and a second internal face, separated from the first internal face by a longitudinal distance L. The daubing device further comprises a dispenser between the first internal face and the second internal face of the housing. The dispenser comprises a flexible wall. The daubing device also comprises a pressure-application device between the dispenser and the second internal face of the housing.
Abstract:
A liquid sealant applicator system that may include a liquid sealant applicator having a coupling to reversibly connect to a source of liquid sealant, a sidewall extending from the coupling and defining a sealant flow path, a flow restrictor that restricts the sealant flow path to an annular pattern of apertures in the flow restrictor, a porous matrix that fills at least a portion of the sealant flow path downstream of the flow restrictor, a matrix retainer configured to retain the porous matrix within the sealant flow path, and a fastener socket connected to the sidewall and having a distal end configured to be placed over and at least substantially enclose the head of a preselected fastener. The applicator is configured to provide a uniform application of sealant from the source of the liquid sealant to the head of the fastener enclosed by the fastener socket.
Abstract:
Provided are methods and systems for applying materials at interface areas formed by fasteners and parts. Specifically, a material is delivered to an interface area such that at least a portion of a fastener remains free from this material. The interface area may be sealed such that the material is contained within that area. As such, a controlled amount of the material is dispensed in a precise location. An applicator used for this process may include a housing and inner guide slidably disposed within this housing. The material may be delivered through an annular flow channel between the housing and inner guide. The inner guide may be sealed against and, in some embodiments, centered with respect to the fastener. The housing may be sealed with respect to the part and, in some embodiments, may be rotated with respect to the part to redistribute the material at the interface area.
Abstract:
A device for applying a spray coating includes at least two component cartridge, each including an aperture in fluid communication with a static mixing nozzle, and at least one paint applicator comprising a spray tip in fluid communication with the static mixing nozzle. At least one flexible hose is disposed between and in fluid communication with the spray tip and the static mixing nozzle.
Abstract:
A method for a dosing feeder for a viscous medium is disclosed. When the dosing feeder is operated in a system mode, the medium is supplied by means of a pump from a storage container to the dosing feeder. A controller is used to supply the medium to the dosing feeder and dispense the medium from the dosing feeder. When the dosing feeder is operated in a cartridge operating mode, the medium is supplied from the storage container to the dosing feeder separately from a cartridge to the dosing feeder. The controller is used to supply the medium to the dosing feeder and dispense the medium from the dosing feeder.
Abstract:
A discharge device discharges the content of a container by applying a compressed gas. The device has a housing, at least one compressed gas container, an operating device for setting a gas flow from the compressed gas container and an opening means for opening the compressed gas container. The opening means is movable in relation to the compressed gas container, and the device has a holder for securing the container on the device. The holder is in operative connection with the opening means in such a way that securing the container on the holder brings about a movement of the opening means in relation to the compressed gas container that opens the compressed gas container.
Abstract:
One example of the present disclosure relates to a daubing device for applying viscous material to a fastener. The daubing device comprises a housing comprising a first internal face and a second internal face, separated from the first internal face by a longitudinal distance L. The daubing device further comprises a dispenser between the first internal face and the second internal face of the housing. The dispenser comprises a flexible wall. The daubing device also comprises a pressure-application device between the dispenser and the second internal face of the housing.
Abstract:
A device for dispensing a sealant or other material. The device has a housing containing a chamber with a dispensing orifice at a first end and an actuation opening at a second end opposite the first end. The chamber contains a mixing paddle which can be rotated and translated back and forth inside the chamber; a piston; and a membrane with an open end in fluid communication with the actuation opening. The membrane is arranged such that it can be inflated by injecting fluid into its open end via the actuation opening, inflation of the membrane causing it to press against the piston and push the piston towards the mixing paddle and the dispensing orifice which in turn forces the material past the mixing paddle and out of the dispensing orifice.
Abstract:
Disclosed is an improved applicator gun for mixing two materials passed through the gun under pressure, an A material and a B material, usually a resin and a hardener. The improved gun has substantially straight-through flow paths that beneficially permits the gun to be used with high viscosity materials and/or highly filled materials (large particles) and that beneficially minimize the effect of the pump “wink” associated with pump cycles. The preferred gun is air actuated, so it includes a valve body, a cylinder body for using pneumatic pressure to open and close the valve body, and a trigger body for selectively providing high pressure shop air to the cylinder body. The longitudinal axis of the cylinder body's cylinder and associated piston are uniquely offset from the plane containing the A- and B-paths so that the two paths can pass substantially straight through the cylinder body, and then through the valve body, prior to exiting the tip of the spray gun.