Abstract:
A bicycle tire, notably tubular tire, includes a flexible reinforcing structure added to the tread, the reinforcing structure consisting of high tensile strength yarns assembled beforehand in the form of a knitted sheath or tubular member, and intimately bonded to the rubber by causing the rubber to penetrate into the open meshes of the reinforcing structure during the tire vulcanization.
Abstract:
In one embodiment, a pneumatic tire having a built-in sealant layer, before cure, includes an unvulcanized pneumatic tire assembly having an outer circumferential rubber tread and a supporting carcass. A precursor sealant layer is situated between the supporting carcass and an innermost rubber inner liner. The precursor sealant layer includes a non-flowing polyurethane composition that is neither gel-like nor tacky and is self-supporting. The precursor sealant layer, during curing of the unvulcanized pneumatic tire assembly, thermally degrades so as to provide a gel-like and tacky, self-healing polyurethane composition which defines the built-in sealant layer. The resulting tire, with its innermost polyurethane composition, allows for elimination or reduction in blister formation by reducing or elimination the amount of gases typically given off by organoperoxide-butyl based sealant layers, such as when the tire is at its running temperature. Consequently, the thickness of the inner liner may be reduced.
Abstract:
In one embodiment, a pneumatic tire having a built-in sealant layer, before cure, includes an unvulcanized pneumatic tire assembly having an outer circumferential rubber tread and a supporting carcass. A precursor sealant layer is situated between the supporting carcass and an innermost rubber inner liner. The precursor sealant layer includes a non-flowing polyurethane composition that is neither gel-like nor tacky and is self-supporting. The precursor sealant layer, during curing of the unvulcanized pneumatic tire assembly, thermally degrades so as to provide a gel-like and tacky, self-healing polyurethane composition which defines the built-in sealant layer. The resulting tire, with its innermost polyurethane composition, allows for elimination or reduction in blister formation by reducing or elimination the amount of gases typically given off by organoperoxide-butyl based sealant layers, such as when the tire is at its running temperature. Consequently, the thickness of the inner liner may be reduced.
Abstract:
A sealing material includes the following characteristics: a value of a dynamic elastic modulus, measured at a temperature of 80° C., at a frequency of 1 Hz, and with a deformation of 5%, that is at least 60% lower than a value of the dynamic elastic modulus measured at the temperature of 80° C., at the frequency of 1 Hz, and with a deformation of 1%; and the value of the dynamic elastic modulus, measured at the temperature of 80° C., at the frequency of 1 Hz, and with the deformation of 5%, that is greater than or equal to 0.05 kPa. A tyre for a vehicle wheel includes a carcass structure comprising at least one carcass ply and at least one layer of sealing material disposed in a radially inner position with respect to the at least one carcass ply. A process for producing the tyre is also disclosed.