Abstract:
A tooling assembly, including a cermet tooling body and a plastic support structure operationally connected to the cermet tooling body. The plastic support structure at least partially encapsulates the cermet tooling body. The plastic support structure includes a plastic matrix portion and a plurality of high magnetic permeability metallic particles distributed throughout the plastic matrix portion. Each respective high magnetic permeability metallic particle has a magnetic permeability of at least 0.0001 H/m and each respective high magnetic permeability metallic particle has a relative magnetic permeability of about 8000. The plastic matrix portion is selected from the group consisting of high molecular mass polymers, thermoplastics, thermosetting polymers, amorphous plastics, crystalline plastics, resin-based materials, and combinations thereof.
Abstract:
A dust solidification apparatus including a storage tank for storing dust; a forming member that is disposed at a lower portion of the storage tank, the forming member being provided with a forming hole to allow the dust in the storage tank to flow in; and a first rod and a second rod that are opposed to each other, wherein the first rod and the second rod are driven to reciprocate by advancing into and withdrawing from the forming hole, and advance into the forming hole to compress the dust in the forming hole, wherein the first rod includes a rod tip and a rod base. The axially vertical cross-section of the rod tip of the first rod is larger than the axially vertical cross-section of the rod base of the first rod and is made smaller than the axially vertical cross-section of the forming hole.
Abstract:
The first object of the invention is a method of tableting a tablet mass comprising components crystallizing in a tetrahedral and/or regular system and/or subjected to micronization or nanonization, carried out in the following steps: moving the punches, filling the die cavities and/or die cavity with a tablet mass, lowering the punches and/or punch and compressing a tablet mass, pushing the tablets and/or tablet out of the die cavity, pushing the tablets and/or tablet out of the die, characterized in that the pressure in the tablet press chamber is lowered in the range from −0.005 MPa to −0.15 MPa, wherein the lowering of the pressure in the tablet press chamber reduces the pressure in the tablet press die cavity. The second object of the invention is a device for tableting a tablet mass. Another object of the invention is a kit comprising a tablet mass tableting device, as defined in the second aspect of the invention, and a vacuum pump.
Abstract:
The present invention relates to a pressing tool for the production of friction linings for motor vehicles, whereby the pressing tool has a mold, a die and a mirror plate, whereby the die and the mirror plate have separate ceramic heating plates that come into contact with the pressing material during the pressing procedure, whereby profile plates can additionally be placed on the heating plates of the pressing die, said profile plates then being in contact with the pressing material during the pressing procedure.
Abstract:
A press comprises a press frame, at least one upper punch plate with at least one upper press punch held on it and/or at least one lower punch plate with at least one lower press punch held on it. A die plate has at least one receiver for powdered material to be pressed by the press punches. At least two upper drives are mechanically coupled in the operation of the press, engaging at the upper punch plate for moving the upper press punch in the vertical direction and/or at least two lower drives mechanically coupled in the operation of the press, engaging on the lower punch plate and/or the die plate for moving the lower press punch and/or the die plate in the vertical direction. A method for setting up and operating the press for producing a pellet made of the powdered material, in particular metal powder, is described.
Abstract:
A sample encapsulation system includes a base, a chamber having an inlet and a chamber housing in which the chamber is housed. The chamber is fixedly mounted at least in part within the housing and the housing is movably mounted to the base. The system includes a cap, a first ram operably mounted to the cap for engaging the chamber inlet and a second ram positioned in the chamber opposite the inlet. The second ram is movable toward and away from the first ram. The chamber and housing are movable toward the cap for engaging the first ram with the chamber inlet during an encapsulation cycle and away from the cap, disengaging the first ram from the chamber inlet following an encapsulation cycle. The system includes heating and cooling assemblies and a temperature sensor located remotely from the chamber interior to automatically isolate cooling water to the system.
Abstract:
The invention relates to a device and a method that can be carried out using said device, for producing meat products using pieces of raw meat that are joined together and subsequently cooked and/or that absorb a liquid composition. The device has working surfaces that encompass an inner volume, at least one of said working surfaces having a drive for back-and-forth motion and for pressing the at least one working surface against pieces of raw meat situated in the inner volume that is encompassed by the working surfaces.
Abstract:
A forming die assembly for microcomponents includes a forming die and a punch. The forming die is formed with a cavity, a punch hole connected to the cavity, and a supply path for supplying a raw material with a metal powder and a binder having plasticity. The supply path is connected to the cavity so as to have a gate therebetween and is used for supplying the raw material into the cavity. The punch is slidably inserted into the punch hole, and it opens and closes the gate by reciprocatory sliding. The punch closes the gate and compresses the raw material in the cavity into a green compact by sliding in the direction of the cavity.
Abstract:
A compressive sintering system is described that comprises a die set and a vacuum chamber into which the die set is placed. The die set comprises a die casing and opposing rams forming a die cavity loaded with material to be sintered and is configured to compress the material during sintering. At least one of the opposing rams comprises a surface protection layer, such as a faceplate, in contact with the material to be sintered.
Abstract:
A method, control system, computer program, and article of manufacture for controlling hydraulic press systems, and a new press system that utilizes a number of improvements over the assignee's original system. The control system is designed to control a hydraulic press having a die, at least two separate sets of workpiece forming punches, and at least two hydraulic pistons, each operatively associated with one set of workpiece-forming punches. The control system includes a means for controlling a magnitude of a pressing force applied by each set of workpiece-forming punches, and a means for controlling a position of each set of workpiece-forming punches relative to the die.