Abstract:
The present invention relates to processes for the production of microalgae, cyanobacteria and/or metabolites thereof. Described herein is a process involving, the use of a stimulus applied to a microalgal or cyanobacterial culture to enhance the production of one or more metabolites. Also described herein, is a process for the production of microalgae and/or cyanobacteria comprising an adaptation stage wherein an algal/cyanobacterial culture is grown on a process water feedstock and/or under light emitting diodes (LEDs) emitting light within the spectrum of light wavelengths between around 400 nm and 700 nm, and a production phase, wherein the microalgae or cyanobacteria are grown on the same process water feedstock and/or under the same light conditions used in the adaptation stage. The invention also relates to specific microalgal strains.
Abstract:
A water purification system comprises a bioreaction subsystem receiving contaminated input effluent and having a gas-lift anaerobic membrane bioreactor removing urea and organic matter to create a first effluent. A light-treatment subsystem receives the first effluent and exposes the first effluent to UV light to create a second effluent free from microorganisms. A reactor subsystem fluidically connects an ammonia-reducing reactor to the UV output and receives UV-treated second effluent and has a struvite regenerator connected to the ammonia-reducing reactor output, separating ammonia from the second effluent in the ammonia-reducing reactor, and outputting the ammonia. A separation subsystem fluidically connects to the reactor output and receives the second effluent substantially free from ammonia and has a continuous electro-deionization device separating brine/salts from the second effluent to produce potable water. A closed-loop includes an ammonia-converting subsystem and a sequential fertilizer producer.
Abstract:
A plant growth regulator includes a ferrocenyl polymer composition, a polyaryl ether nitrile-carbonyl iron magnetic material, a deep-sea polysaccharide composition, silica nanoparticles, and an amino acid powder.
Abstract:
The present invention relates to processes for the production of microalgae, cyanobacteria and/or metabolites thereof. Described herein is a process involving, the use of a stimulus applied to a microalgal or cyanobacterial culture to enhance the production of one or more metabolites. Also described herein, is a process for the production of microalgae and/or cyanobacteria comprising an adaptation stage wherein an algaltcyanobacterial culture is grown on a process water feedstock and/or under light emitting diodes (LEDs) emitting light within the spectrum of light wavelengths between around 400 nm and 700 nm, and a production phase, wherein the microalgae or cyanobacteria are grown on the same process water feedstock and/or under the same light conditions used in the adaptation stage. The invention also relates to specific microalgal strains.
Abstract:
Disclosed are a food waste fermentation device and a livestock manure composing device both using soil microbes, and a biofield generator, a microbial cell, and a microbial condenser all of which are suitably used for the devices. The food waste fermentation device includes: a food waste treatment tank for containing food waste; and a biofield generator for promoting lactic acid fermentation of food waste. The biofield generator includes a DC module or an AC module. The DC module includes a DC battery, a frequency generator generating a predetermined frequency carrier wave using DC power, a microbial cell electrically connected to the frequency generator, and a DC output portion. The DC module generates a biofield consisting of an electromagnetic field generated by the frequency generator and an electromagnetic field generated by the microbial cell. The AC module generates a biofield using an AC input signal and a microbial condenser.
Abstract:
An apparatus for controlling water temperature includes a housing defining a composting chamber for receiving compost and a conduit disposed within the housing for providing flow of water. The conduit at least partially receives heat generated by the compost and may include a first subconduit extending substantially about an axis of the housing, a second subconduit extending substantially about the axis of the housing and being spaced apart from the first subconduit and a plurality of elongated subconduits extending between the first subconduit and the second subconduit and providing fluid communication therebetween. The housing may have at least one translucent portion for permitting flow of light waves therethrough. The apparatus may have a mechanism for mixing the compost.
Abstract:
A plant enhancer includes a ferrocenyl polymer composition, a polyaryl ether nitrile-carbonyl iron magnetic material, silica nanoparticles, and an amino acid powder.
Abstract:
A plant growth regulator includes a ferrocenyl polymer composition, a polyaryl ether nitrile—carbonyl iron magnetic material, a deep-sea polysaccharide composition, silica nanoparticles, and an amino acid powder.
Abstract:
A plant enhancer includes a ferrocenyl polymer composition, a polyaryl ether nitrile-carbonyl iron magnetic material, silica nanoparticles, and an amino acid powder.
Abstract:
A compost that has been previously cured is subjected to a variety of processes and additional components to result in a pelletized form suitable for commercial and residential applications. A phosphorous component, a potassium component, a lime component, and a plant growth component are added to the fully cured compost to produce a secondary compost. The secondary compost is treated with microwaves to adjust the ration of aerobic to anaerobic bacteria.