Abstract:
A substituted alkenylbenzene compound of formula (4): wherein X1 is selected from the group consisting of a halogen atom, —SF5, C1-C6haloalkyl, hydroxy C1-C6haloalkyl, C1-C6alkoxy C1-C6haloalkyl, C3-C8halocycloalkyl, C1-C6 haloalkoxy C1-C3haloalkoxy C1-C3haloalkoxy, C1-C6haloalkylthio, C1-C6haloalkylsulfinyl and C1-C6haloalkylsulfonyl; X3 is selected from the group consisting of a hydrogen atom, halogen atom, cyano, nitro, C1-C6alkyl, C1-C6haloalkyl, C1-C6alkoxy and C1-C6 alkylthio; X4 is selected from the group consisting of a hydrogen atom, halogen atom, cyano, C1-C4alkyl, C1-C4alkoxy and C1-C4haloalkoxy; R3 is —C(R3a)(R3b)R3c, where R3a and R3b independently of each other are a halogen atom, or R3a and R3b together form 3- to 6-membered ring together with the carbon atom bonding them by forming a C2-C5haloalkylene chain, and R3c is selected from the group consisting of a hydrogen atom, halogen atom, C1-C5alkyl, C1-C5haloalkyl, C1-C4haloalkoxy and C1-C4haloalkylthio, with a proviso that in case here X1 is a fluorine atom, chlorine atom or trifluoromethyl, and both X2 and X3 are a hydrogen atom, in case where both X1 and X2 are fluorine atom and X3 is a hydrogen atom, and in case where both X1 and X2 are trifluoromethyl and X3 is a hydrogen atom, R3c is a hydrogen atom, chlorine atom, bromine atom, iodine atom, C1-C5alkyl, C1-C5haloalkyl, C1-C4haloalkoxy or C1-C4haloalkylthio.
Abstract:
A process for the manufacture of a haloaryl compound which comprises contacting a mixture of dihalodiarylsulfone isomers [mixture (M)] with sulfuric acid to provide a mixture of haloarylsulfonic acid isomers [mixture (M1)] and reacting mixture (M1) in the presence of water. The process is independent on the manufacturing process of mixture (M) and is advantageous in that the obtained haloaryl compound can be recycled to the first step of a dihalodiarylsulfone manufacturing process.
Abstract:
The present invention relates to aggregate zeolitic adsorbents based on zeolite X and zeolite LSX.These adsorbents are particularly suitable for separating C8 aromatic isomers and in particular xylenes, separating sugars, separating polyhydric alcohols, separating isomers of substituted toluenes, separating cresols, separating dichlorobenzenes.
Abstract:
In a process for preparing p-dichlorobenzene by nuclear chlorination of benzene and/or chlorobenzene as the starting material with chlorine molecules, chlorination is carried out using aluminum chloride in an amount of 0.1-3 millimols per mol of the starting material and phenothiazines such as 10H-phenothiazine-10-carboxylic acid phenyl ester in an amount of 0.1-0.9 mols per mol of aluminum chloride so as to be a chlorination degree in a range of 1.2-2.5, by which p-dichlorobenzene can be obtained in a high para-selectivity and a short reaction time.
Abstract:
The present invention relates to a new process for the preparation of Tetraconazole or one of its optically active isomers by means of the fluorination of 2-(2,4-dichlorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-1-ol.
Abstract:
To provide a novel process for producing p-dichlorobenzene satisfying both of high selectivity of p-dichlorobenzene and high conversion of chlorine at the same time.A process for continuously producing p-dichlorobenzene, which is a process for producing p-dichlorobenzene by a nuclear chlorination reaction of benzene and/or chlorobenzene with chlorine, in the presence of a Lewis acid catalyst and a phenothiazine analogue compound, said process comprising; employing a reactor having a first supply route for continuously supplying a mixed solution of benzene and/or chlorobenzene and a Lewis acid catalyst to a reactor, a second supply route for continuously supplying a mixed solution of benzene and/or chlorobenzene and a phenothiazine analogue compound to the above reactor, and a third supply route for continuously supplying chlorine to the above reactor; and supplying these raw materials for the reaction by opening the above first supply route and third supply route in random order at the initiation of reaction, and then opening the above second supply route.