Abstract:
Decomposition is performed with the application of the method and apparatus by separating solid contaminants from the emulsion, absorbing CO2 gas in the emulsion, thereby switching the emulsion type from W/O to O/W, pre-heating the emulsion utilizing a heat regenerator (32), setting the stability minimum of the emulsion by adjusting the pH, resolving the emulsion in an electrochemical decomposition reactor (38) by passing it between an anode made of electrochemically active material and a cathode made of electrochemically inactive material, while the colloid particles of the emulsion are bound in flocks forming a foam utilizing as a flocculant the compound produced in situ from the electrochemically active anode, —discharging the foam produced in the above step, and—discharging the decontaminated water through a final settlement tank (47) and/or a final filter (44) and a heat regenerator (32).
Abstract:
The invention relates to a matrix liquid for producing machining suspensions, a machining suspension produced with the matrix and a method of fractionating the used machining suspension yielded after use. The invention also relates to a homogeneous mixture of a polymer or various polymers and water. The mixture can be used especially advantageously in all technical applications requiring a liquid with lubricating properties. In the present invention, a mixture of water and a thickening agent, respectively a polymer or a multiplicity of polymers, is utilized as the matrix liquid or lubricating liquid. The cutting grains can be separated very easily and quickly from the used machining suspension produced with this matrix liquid; for reuse. Less process water is required and the process water can be simply purified as there is no complicated getting rid of an alcohol charge.
Abstract:
A method for separating a more hydrophobic grease or oil contaminant from a less hydrophobic aqueous coolant/lubricant emulsion in which the contaminant has accumulated and in which it is itself emulsified. The contaminated coolant/lubricant is passed through a fluid pervious filtration media which has been infused with an absorption composition which is a homogeneous thermal reaction product of an oil component selected from the group consisting of glycerides, fatty acids, alkenes, and alkynes, and a methacrylate or acrylate polymer component. The contaminant is immobilized at the media and preferentially retained at the filter; and the purified filtrate having passed through the filtration media is collected for further use.
Abstract:
Water is separated from an emulsion of water and oil by passing the emulsion through a bed of superabsorbent polymer granules which break the emulsion and absorb water from the mixture of water and oil. An apparatus for separating water from an emulsion of water and oil has at least one separation cell containing a bed of super absorbent polymer granules.
Abstract:
A method for purifying coolant-lubricant oils which continuously circulate in metalworking installations and are purified by a vacuum filter assembly (13). The basic filtration takes place in the main stream, while additional purification by membrane filtration takes place in a secondary stream. The resulting method has a high filtration capacity and ensures an optimal purification of the coolant-lubricant liquid.
Abstract:
A device for treating liquids, especially coolants and lubricants for machining materials involving chip removal, is provided, and combats the problems of biological decomposition, biological collapse, and attacks by viruses and microorganisms such as fungi and bacteria. The device includes a device for producing a liquid film and a UV radiation unit for zero-contact irradiation of the film.
Abstract:
A device for regenerating the cooling emulsion (3) stagnating in the tanks (2) of the machine tools, characterized in that the proliferation of anaerobic bacteria responsible for the evil-smelling deterioration of said emulsion (3) is suppressed by the use of a plurality of oxygenation pipes (1) submersed in the cooling liquid and capable of producing air microbubbles that ensure a sufficient and uniform oxygenation of the emulsion and avoid the formation of the typical, continuous lubricating oil layer above the coolant (3). Said oxygenating microbubbles causes also a continuous displacement of the cooling emulsion (3) that reduce the risk of dissociation of the emulsion itself. Pipes (1) submersed in coolant (3) in tank (2) have holes (5) allowing internal pressurized air to escape regularly and to oxygenate cooling liquid (3). Said pipes (1) are coated outside by a sponge rubber layer (4) made of a material resistant to the oil components of the emulsion so as to ensure a slow, homogeneous production of air microbubbles which bubble through the sponge rubber. Said microbubbles are formed by compressed air having a low pressure barely enough to cause air to escape regularly from pipes (1).
Abstract:
Disclosed is a process of recycling and reusing an aqueous degreasing solution for further use as a component of a coolant solution which is itself recycled and reused in metal cutting machines. Also disclosed is a method of degreasing parts, and a degreasing apparatus which is controlled such that an appropriate amount of the aqueous degreasing solution is introduced into the coolant solution. Finally, disclosed herein is a method and system for preparing a coolant in which an aqueous degreasing solution is further utilized as a feeder solution for a coolant solution, with the resulting solution being able to be separated into its component parts and reused in the cutting and cleaning of metals to form metal parts.
Abstract:
A second purifying apparatus 2 for furthermore purifying working solution purified by a first purifying apparatus 1 is disposed downstream of the first purifying apparatus 1. A working-solution introducing pipe 42 which is capable of diffusing and discharging the working solution from the lower end thereof is disposed in substantially the central portion of the working-solution accumulating tank 40 in which the working solution is accumulated. A filter 44 for vertically sectioning the working-solution accumulating tank 40 at an intermediate position is provided. A weir 45 is formed at an upper end of the working-solution accumulating tank 40. Moreover, a separating wall is formed along the inner wall of the weir 45. A solution gathering groove 47 is provided for the outer surface of the weir 45.
Abstract:
Use of polymeric two-phase systems for removing microbial contaminants from industrial lubricating agents, a method of purifying microbial contaminated lubricating agents by mixing the lubricating agent with a polymeric two-phase system, allowing the mixture to separate so as to form a top-phase containing the lubricating agent and a bottom-phase containing at least part of the microbial contaminants, and separating at least a major part of the microbially enriched bottom-phase from the top-phase, a plant for microbial purification of lubricating agents comprising a mixing tank (4) having means (7, 8) for feeding microbially contaminated lubricating agent (S) to the mixing tank, means (13) for feeding a polymeric two-phase system to the mixing tank, a stirrer (5) in the mixing tank, means (9, 10) for feeding the mixture to a separation device (6) for separating the mixture into a top-phase (T) containing lubricating agents, and a bottom-phase (B) containing microbial contaminants, and means (18) for recovering the top-phase of the two-phase system, and a lubricating agent concentrate, in which at least part of the lubricating agent at the same time forms part of the top-phase component of the polymeric two-phase system.