摘要:
A sustainable biosynthesizing of tetrodotoxin (TTX) based on seed culture of Vibrio spp is obtained from the mucus of various species of nemerteans (ribbon worms) (phylum Nemertea). The indispensable organisms are kept alive which extends access to crude material and makes the procedure economically and ecologically sustainable.
摘要:
Incubation of a parent strain of Vibrio cholerae at elevated temperature to produce a hypotoxinogenic variant strain and mutation of the variant strain results in mutant strains which retain the biotype and antigens of the parent strain, and which are genetically stable and useful as live oral vaccines for immunization against cholera. Preferably, a hypotoxinogenic mutant which is also non-pathogenic in animal model systems is isolated by the method disclosed in this application.
摘要:
The invention concerns a hydrothermal bacterial strain of marine origin, belonging to the genus Vibrio, and an exopolysaccharide produced by said strain. Said exopolysaccharide is useful in particular for preparing medicines.
摘要:
The invention features a nontoxigenic genetically stable mutant strain of V. cholerae which lacks any functional attRS1 sequences is useful as a live, oral vaccine for inducing immunological protection against cholera and a method for making same. The invention also features a killed, oral cholera vaccine comprising at least a first and a second V. cholerae strain, wherein at least one of the strains is a different serotype, and the vaccine also contains cholera toxin B subunit, produced by at least one of the serotypes.
摘要:
This invention relates to a method of isolating deletion mutants of Vibrio cholerae, wherein the deletion is predetermined by digestion with restriction endonucleases of known specificity. The deletions are inserted into the Vibrio cholerae chromosome by in vivo recombination between a plasmid carrying the desired deletion, with adjacent flanking sequences, and the Vibrio cholerae chromosome. The invention includes the isolation and characterization of a new Vibrio cholerae strain having a deletion in the tox gene, as defined by Acc I, Xba I, Cla I and/or Hind III restriction endonuclease sites.
摘要:
Avirulent Vibrio cholerae strains of O1 (CVD111) and non-O1 (CVD112 and CVD112RM) serogroups having the DNA of the cholera toxin core and the RS1 sequences of the cholera toxin locus deleted, and further having a DNA encoding a resistance to mercury, and a DNA encoding the cholera toxin B subunit, or a part thereof sufficient to confer immunogenicity, re-inserted in the chromosome. Methods of making the avirulent V. cholerae O1 and non-O1 strains of the invention, and cholera vaccines using these strains.
摘要:
Methods of isolating deletion mutants of Vibrio cholerae. In one method, the deletion is predetermined by digestion with restriction endonucleases of known specificity. The deletions are inserted into the Vibrio cholerae chromosome by in vivo recombination between a plasmid carrying the desired deletion, with adjacent flanking sequences, and the Vibrio cholerae chromosome. In another method, an initial in vivo recombination event of homologous sequences from the recombinant plasmid into the chromosome provides a selectable marker at this site. A second in vivo recombination event between homologous flanking sequences results in excision of proficient genes from the chromosome with the end product being a deletion mutation. Also provided are methods for the isolation and characterization of a new Vibrio cholerae strain having a deletion in the ctx gene, as defined by Acc I, Xba I, Cla I and/or restriction endonuclease sites and further having a deletion in the gene encoding zonula occludens toxin (zot).
摘要:
Method of isolating deletion mutants of Vibrio cholerae, wherein the deletion is predetermined by digestion with restriction endonucleases of known specificity. The deletions are inserted into the Vibrio cholerae chromosome by in vivo recombination between a plasmid carrying the desired deletion, with adjacent flanking sequences, and the Vibrio cholerae chromosome. The invention includes the isolation and characterization of a new Vibrio cholerae strain, (ATCC No. 55456), having a deletion in the tox gene, as defined by Acc I, Xba I, Cla I and/or restriction endonuclease sites, and carrying a mercury resistance gene. The invention also includes vaccines for protecting against the symptoms of cholera as well as methods for achieving this protection.
摘要:
Vibrio cholerae, Ogawa serotype, El Tor biotype, are subjected to the mutagenic N-methyl-N'-nitro-n-nitrosoguanidine (NTG). First generation mutants are screened for toxin production, and in particular the absence of "A" or enzymatically active subunit production and production of B (binding) subunit. Putative A.sup.- B.sup.+ mutants are again exposed to NTG and screened for the A.sup.- B.sup.+ characteristics. The formula of the native toxin molecule is usually A.sup.+ B.sup.+.sub.5-6, the formula for the molecule produced by the selected second generation mutant is A.sup.- B.sup.+.sub.5-6. This mutant strain is used for production of a live attenuated vaccine which can be administered orally. The mutant has been found to induce immunity, in an experimental model system, against subsequent challenge with virulent cholera vibrios. Because of the immunologic relationship to other enterotoxins (such as the heat-labile enterotoxin of Escherichia coli), the mutant may also induce immunity to diarrheal diseases other than cholera. In fact, antiserum to the isolated toxin-related protein produced by the mutant has been shown to neutralize E. coli entero-toxin. The mutant may also be used for the production of "choleragenoid", the non-toxic, highly immunogenic B portion of the cholera enterotoxin (choleragen) without the complication of toxicity associated with the complete enterotoxin.
摘要:
The present disclosure provides compositions comprising recombinant bacterial spores. The present disclosure is also directed to vaccine based compositions, which include recombinant bacterial spores that express CTB and a peanut protein(s) on their surfaces. This disclosure also provides methods for administering these compositions as a treatment or prevention of peanut allergy.