Abstract:
According to the invention, a metal salt and an oxygen source are applied to penetrate or impregnate a suitable substrate sequentially in effective amounts so as to react in contact with the substrate and produce a mineral compound fixed within the surface of the substrate. The inventive combination of a mutually compatible metal salt, oxygen source, and substrate brings about an in situ reaction, and modifies the substrate to bring about a lasting desired effect. The mineral compound that is produced according to the invention is linked to the substrate, is stable and long-lasting or permanent, and is immobilized or insolubilized in the substrate. The mineral compound is bound or contained within and on the surface of the substrate, so it may be said to be ingrained in the fibers or matrix of the substrate, or embedded within the substrate. The desired effect is preferably a color. A wide variety of metal salts may be used depending on the desired effect. The oxygen source is preferably a peroxide, and the substrate is preferably a cellulose product such as wood, cotton, or paper; leather; or masonry. The invention contemplates methods of treating substrates, treatment kits, and treated products. With wood products, the invention provides a water-based stain of low toxicity useful for soft woods.
Abstract:
According to the invention, a metal salt and an oxygen source are applied to penetrate or impregnate a suitable substrate sequentially in effective amounts so as to react in contact with the substrate and produce a mineral compound fixed within the surface of the substrate. The inventive combination of a mutually compatible metal salt, oxygen source, and substrate brings about an in situ reaction, and modifies the substrate to bring about a lasting desired effect. The mineral compound that is produced according to the invention is linked to the substrate, is stable and long-lasting or permanent, and is immobilized or insolubilized in the substrate. The mineral compound is bound or contained within and on the surface of the substrate, so it may be said to be ingrained in the fibers or matrix of the substrate, or embedded within the substrate. The desired effect is preferably a color. A wide variety of metal salts may be used depending on the desired effect. The oxygen source is preferably a peroxide, and the substrate is preferably a cellulose product such as wood, cotton, or paper; leather; or masonry. The invention contemplates methods of treating substrates, treatment kits, and treated products. With wood products, the invention provides a water-based stain of low toxicity useful for soft woods.
Abstract:
The present invention relates to a method for reducing the fibrillation tendency of lyocell fibre. Never-dried fibre is treated by an inorganic alkali solution and a chemical reagent having an average of greater than 2.1 acrylamido groups, and then heated. This method produces cellulose materials with a smooth white appearance resistant to creasing in the wet state.
Abstract:
A method for deep dyeing of cellulose fibers comprising dyeing the fibers with one or more phthalocyanine reactive dyes in a liquor, containing more than 80 g/l salt at pH of 10 or more characterized in that dyeing is carried out at a temperature above 100.degree. C. (eg about 105.degree.-150.degree. C.).
Abstract translation:一种用于纤维素纤维深染的方法,包括用一种或多种酞菁活性染料在含有大于80g / l pH在10或更高的pH下的液体中染色纤维,其特征在于染色在100℃以上的温度下进行 (例如约105°-150℃)。
Abstract:
The present invention relates to a method of dyeing using a salt mixture as an electrolyte with 0.5 to 5.00 GPL of sodium chloride or sodium sulphate and alkali agents I and II to exhaust and fix a dyestuff to a cellulose material in a reactive dyeing. In the method the cellulose fiber is treated with (i) the salt mixture with sodium chloride or sodium sulphate specifically, putting the pre-treated fiber maintained at a pH between 3 and above and an (MLR) maintained between 1:20 and 1:3 at a temperature between 20° C. and above and exhausted for between 15 minutes and above, (ii) the alkali agent I with a pH between 9.5 and above at a temperature between 30° C. and above and stained for between 20 minutes and above (iii) the alkali agent II with a pH between 10.5 and above at a temperature between 30° C. and above and stained for 40 minutes and above.
Abstract:
The present invention provides compositions for treating textiles, including carpet and other floor coverings. Compositions of the present invention, in some embodiments, can impart flame resistant and/or stain resistant properties to fibers, including synthetic fibers comprising polyolefins, polyamides, and polyesters such as polytrimethylene terephthalate.
Abstract:
The present invention provides compositions for treating textiles, including carpet and other floor coverings. Compositions of the present invention, in some embodiments, can impart flame resistant and/or stain resistant properties to fibers, including synthetic fibers comprising polyolefins, polyamides, and polyesters such as polytrimethylene terephthalate.