Abstract:
A rotary internal combustion engine having a cover plate, and stator plate having a bore with teeth and a primary cog that is larger than the teeth. A main rotor having a partially-circular cut-out. A gear rotor is disposed within the cut-out, having teeth that engage the teeth of the stator ring. A base plate has inlet ports for receiving fuel, air, and spark, where an ignition of the fuel and air by the spark creates a high pressure zone that drives the main rotor and the gear rotor rotationally within the stator ring, and an outlet port for exhausting spent fuel and air.
Abstract:
A rotary engine includes an intake port, an exhaust port, a rotor having an intake channel and/or an exhaust channel, and a rotor shaft coupled to the rotor. The rotor shaft has an inflow channel in communication with the intake channel and/or an outlet channel in communication with the exhaust channel. The rotary engine includes a housing having a working chamber formed between the housing and the rotor, the working chamber configured to handle, in succession, an intake phase, a compression phase, a combustion phase, an expansion phase, and an exhaust phase. The inflow channel cyclically communicates with the intake port and forms a passage between the intake port and the working chamber through the rotor shaft and the intake channel. The outlet channel cyclically communicates with the exhaust port and forms a passage between the exhaust port and the working chamber through the rotor shaft and the exhaust channel.
Abstract:
A rotatory internal combustion engine includes a power module, a housing configured to retain the power module and including an intake and an exhaust, and a first sleeve including a sleeve intake, a sleeve exhaust, and an injector port. The first sleeve is removably coupleable within the housing to form an intake flow path between the housing intake and the sleeve intake, and an exhaust flow path between the housing exhaust and the sleeve exhaust. The first sleeve is interchangeable with a second sleeve that has at least one of a sleeve intake, a sleeve exhaust, and an injector port different than the corresponding sleeve intake, sleeve exhaust, and injector port of the first sleeve, and that is configured to modify at least one of a torque output of the engine, a power output of the engine, and a fuel timing of the engine, compared to the first sleeve.
Abstract:
A rotatory internal combustion engine includes a power module, a housing configured to retain the power module and including an intake and an exhaust, and a first sleeve including a sleeve intake, a sleeve exhaust, and an injector port. The first sleeve is removably coupleable within the housing to form an intake flow path between the housing intake and the sleeve intake, and an exhaust flow path between the housing exhaust and the sleeve exhaust. The first sleeve is interchangeable with a second sleeve that has at least one of a sleeve intake, a sleeve exhaust, and an injector port different than the corresponding sleeve intake, sleeve exhaust, and injector port of the first sleeve, and that is configured to modify at least one of a torque output of the engine, a power output of the engine, and a fuel timing of the engine, compared to the first sleeve.
Abstract:
In one aspect, described is a rotor of a rotary internal combustion engine, including a phasing gear with an annular meshing section including a plurality of radially inwardly oriented teeth and an annular attachment section connected to the meshing section and coaxial therewith, the attachment section being offset axially inwardly from the teeth and having at least a portion thereof located radially inwardly of the teeth, and a fastener apparatus connecting the phasing gear to the rotor body, the fastener apparatus engaging the rotor body radially inwardly of the teeth.
Abstract:
In one aspect, described is a rotor for a rotary internal combustion engine where a first face seal biased axially outwardly away from the first end face has opposed curled ends abutting a first seal element of a respective one of the adjacent apex seal assemblies, and a second face seal biased axially outwardly away from the second end face has opposed curled ends abutting a second seal element of a respective one of the adjacent apex seal assemblies.
Abstract:
A sealing system of rotary piston machines, the rotor excludes rotor discs which are arranged next to one another, and which are seated on the common rotor axle and are pressed apart from one another by acting spring and/or gas forces in the joints between the discs in such a way that the end sides of the discs which point towards the side walls of the housing bear sealingly against the latter and thus prevent the access of the medium to the axles. Assemblies comprising movable shaped lamellae which adapt to the changing joint widths and prevent an inner flow around the rotor are present in the part joints between the discs.
Abstract:
A rotatory internal combustion engine is provided. The engine includes a power module, wherein all moving parts of the engine are positioned within the power module, a housing including an intake and an exhaust, wherein the housing is configured to retain the power module, and a sleeve configured to couple in the housing, the sleeve including a sleeve intake and a sleeve exhaust.
Abstract:
A scroll compressor includes a housing, a fixed scroll, and a movable scroll. A compression chamber is formed between the movable scroll and the fixed scroll. An opposing wall is located in and fixed to the housing. A back pressure region is formed between the opposing wall and the movable scroll, and a back pressure in the back pressure region urges the movable scroll toward the fixed scroll. An annular sealing member is arranged between the movable scroll and the opposing wall. The movable scroll includes a holding portion that holds the sealing member. The sealing member includes a rubber portion, which elastically deforms in the holding portion, and a resin portion, which is made of a material harder than the rubber portion. The resin portion at least partially projects out of the holding portion toward the opposing wall. The resin portion is in contact with the opposing wall.
Abstract:
A seal groove is cut in the distal end face of a wrap of a fixed scroll, with a tip seal being fitted in the seal groove. Swelling members are interposed between both side faces of the tip seal and corresponding opposite side faces of the wrap. Condensed liquid of working medium w and water condensed from steam contained in the working medium w that are present between the tip seal and an end plate provide a sealing effect. When the swelling members swell upon absorbing the condensed liquids, they exert a strong pressing force on the tip seal and the wrap, thereby firmly retaining the tip seal in position. This prevents the tip seal from being pressed against the end plate, so that wear of the tip seal is reduced.