Abstract:
The invention relates to a fuel injector for injecting fuel into the combustion chamber of an internal combustion engine, comprising a nozzle needle (1) which is able to perform stroke motions and by the stroke motion of which at least one injection opening can be exposed or closed, and further comprising a control valve (2) for controlling the stroke motion of the nozzle needle (1) in that, depending on the respective switch position of the control valve (2), hydraulic pressure applied in closing direction to the nozzle needle (1) in a control chamber (3) is altered, and further comprising a sensor array (4) for detecting the needle closing time. According to the invention, the sensor array (4) is arranged in the low-pressure area of the fuel injector in a space (5) which is sealed with respect to the fuel-conducting area (6). Sealing of the space (5) is effected by a membrane (7) made of a fuel-resistant, electrically conductive material, allowing the membrane (7) to also be utilized for implementing a ground connection.
Abstract:
A method is disclosed for detecting a nozzle chamber pressure in an injector that includes a closure element for opening and closing an injection opening, at least one actuator which directly actuates the closure element, and at least one sensor for measuring a state, which is dependent on the nozzle chamber pressure, of the closure element, wherein at least one measurement variable which is dependent on the state is detected by means of the sensor, and wherein a deviation of the measurement value from a predefined value is determined. An injection system for carrying out such method is also disclosed.
Abstract:
A method for operating a fuel injection system with pressure reduction, and a fuel injection system that includes a fuel injection valve with a servo valve are provided. The method for operating a fuel injection system includes performing a desired pressure reduction in the pressure accumulator using at least one fuel injection valve of the fuel injection system. This is achieved by opening a servo valve in the fuel injection valve, which is opened, during a pressure reduction phase, just wide enough that the actual closing element remains closed and as a result no fuel injection process takes place.
Abstract:
A fuel injector includes a piezoelectric actuation mechanism and a sensor configuration to measure the condition of the actuation mechanism as well as an associated fuel rail. The sensor configuration includes a piezoelectric sensor with an output signal with significantly reduced distortion that accurately reflects control signals provided to the piezoelectric actuation mechanism.
Abstract:
A valve for triggering a fluid is proposed, having an actuator unit (7) for actuating an axially displaceable valve member (6), with which a valve closing member (15) is associated, which for opening and closing the valve (1) cooperates with a valve seat (23) and which separates a high-pressure region (3) from the valve (1). In the high-pressure region (3), the fluid to be triggered is at an operating pressure (p_R). This operating pressure (p_R) and an overpressure that may occur in some circumstances is recorded, because of the provision that the actuator unit (7) is embodied as a force-measuring sensor. In particular, this valve (1) serves as a pressure-limiting valve in a common rail system (Drawing).
Abstract:
A fuel injector includes an injector housing, a longitudinally movable nozzle needle, and a force sensing element. The injector housing defines a nozzle chamber, a pressure chamber, and a measuring chamber. The nozzle chamber is configured to be supplied with pressurized fuel via a feed line formed in the injector housing. The pressure chamber is configured to be hydraulically connected to the feed line. The nozzle needle is disposed in the nozzle chamber and is configured to open and to close at least one spray hole. The force sensing element is disposed in the measuring chamber and is configured to detect a pressure in the pressure chamber. The measuring chamber is separated from the pressure chamber by a diaphragm-like intermediate wall. The force sensing element supports the intermediate wall.
Abstract:
An actuator unit for a fuel injection valve of a vehicle internal combustion engine. The actuator unit includes an electronic component formed as a stack. The component includes a plurality of electrode layers and a plurality of material layers which are arranged alternately and react to the application of an electric field. The component also has two outer electrodes electrically connected to respective electrode layers on at least one circumferential side of the component. Additionally, the actuator unit has a piezoelectric sensor coupled to the component in a force-fitting manner, in the stroke direction of the component. When the component is in operation, the sensor detects a force generated by the component, as a voltage or charge between two electrodes arranged on opposing end faces, of a sensor element. The electrodes are deposited from an electrically conductive material directly onto at least the end faces of the sensor element.
Abstract:
A method for operating a fuel injection system with pressure reduction, and a fuel injection system that includes a fuel injection valve with a servo valve are provided. The method for operating a fuel injection system includes performing a desired pressure reduction in the pressure accumulator using at least one fuel injection valve of the fuel injection system. This is achieved by opening a servo valve in the fuel injection valve, which is opened, during a pressure reduction phase, just wide enough that the actual closing element remains closed and as a result no fuel injection process takes place.
Abstract:
An actuator unit for a fuel injection valve of a vehicle internal combustion engine. The actuator unit includes an electronic component formed as a stack. The component includes a plurality of electrode layers and a plurality of material layers which are arranged alternately and react to the application of an electric field. The component also has two outer electrodes electrically connected to respective electrode layers on at least one circumferential side of the component. Additionally, the actuator unit has a piezoelectric sensor coupled to the component in a force-fitting manner, in the stroke direction of the component. When the component is in operation, the sensor detects a force generated by the component, as a voltage or charge between two electrodes arranged on opposing end faces, of a sensor element. The electrodes are deposited from an electrically conductive material directly onto at least the end faces of the sensor element.
Abstract:
A fuel injector includes a piezoelectric actuation mechanism and a sensor configuration to measure the condition of the actuation mechanism as well as an associated fuel rail. The sensor configuration includes a piezoelectric sensor with an output signal with significantly reduced distortion that accurately reflects control signals provided to the piezoelectric actuation mechanism.