Abstract:
A gaseous fuel and air mixing venturi device is adapted for installation in a gaseous fuel carburetor and has a venturi body defining annular inner and outer venturi passageways which each have a throat of reduced cross-sectional area and have inlet ends in communication with an air inlet of the carburetor. A fuel inlet is configured for connection to a fuel port of the carburetor, and communicates with a plurality of fuel supply ports in the body communicating radially with the inner and outer venturi passages to mix with the air flowing in the passageways.
Abstract:
The invention relates to an injection device (1), designed in particular for injecting fluid into an exhaust tract of an internal combustion engine, having a valve needle (14), an injection chamber (12) having at least one injection opening (44), and a control chamber (20). The injection device (1) is designed such that a pressure differential between the injection chamber (12) and the control chamber (20) brings about a displacement of the valve needle (14) between an open position in which a fluid flow through the injection opening (44) from the injection chamber (12) is released, and a closed position, in which the injection opening (44) is closed off. The injection chamber (22) and the control chamber (20) are hydraulically connected to an inlet (40, 42; 9), such that a pressure rise in the inlet (40, 42; 9) results in a pressure rise in the injection chamber (12), and a pressure rise in the control chamber (20) delayed in time relative to the pressure rise in the injection chamber (12), and said pressure differential brings about a displacement of the valve needle (14) from the closed position into an open position.
Abstract:
An emulsion tube for a carburetor is formed with a porous wall surrounding an inner passage, wherein air travels about one side of the wall and fuel travels about the opposite side, with air being supplied through the pores to aerate the fuel (with the aerated fuel then being expelled into a venturi wherein engine intake air is traveling to further mix the fuel with the intake air therein). The emulsion tube can beneficially provide a high degree of fuel/air mixing across the entire range of intake airstream flow rates at which an engine may operate. The porosity of the emulsion tube can also be tailored to provide the desired fuel/air ratio(s) across the engine's operational range of intake airstream flow rates.
Abstract:
The present disclosure generally relates to an engine with an integrated mixing of fluids device and associated technology for improvement of the efficiency of the engine, and more specifically to an engine equipped with a fuel mixing device for improvement of the overall properties by inline oxygenation of the liquid, a change in property of the liquid such as cooling form improved combustion, or the use of re-circulation of exhaust from the engine to further improve engine efficiency and reduce unwanted emissions.
Abstract:
An emulsion tube for a carburetor is formed with a porous wall surrounding an inner passage, wherein air travels about one side of the wall and fuel travels about the opposite side, with air being supplied through the pores to aerate the fuel (with the aerated fuel then being expelled into a venturi wherein engine intake air is traveling to further mix the fuel with the intake air therein). The emulsion tube can beneficially provide a high degree of fuel/air mixing across the entire range of intake airstream flow rates at which an engine may operate. The porosity of the emulsion tube can also be tailored to provide the desired fuel/air ratio(s) across the engine's operational range of intake airstream flow rates.
Abstract:
An idle fuel supply device for a carburetor has an idle air passage that communicates with an air intake passage and a fuel chamber. A passage extending from a fuel metering chamber is connected to the fuel chamber preferably via a fuel adjusting needle valve. A low speed fuel nozzle hole communicates the fuel chamber with the air intake passage in the vicinity of a throttle valve when in its idle position. A passage communicates with the fuel chamber and the idle air passage, so that fuel and air may mix in at least a portion of the idle air passage.