摘要:
A method and system for purifying contaminated refrigerants is described. The refrigerant is heated in a controlled manner to separate it into fractions, one fraction having the pure refrigerant and the remaining fractions containing the contaminants. The temperature of the refrigerant fraction output being closely monitored and controlled to ensure that it is the correct required fraction.
摘要:
A refrigerant recovery unit is provided and includes a safe purging mode. The safe purging mode allows non-condensable gases to be incrementally purged from a storage tank when the determined ideal vapor pressure is high, such as 40 p.s.i., in order to minimize refrigerant loss during purging. The purging can be done in small increments of time, pressure or mass. The storage tank can include a dip tube that extends into the liquid portion of the refrigerant in order to heat up the refrigerant in the tank with the heated recovered refrigerant.
摘要:
A purge system for removing contamination from a chiller system includes a purge chamber including a degassing membrane, the degassing membrane dividing the purge chamber into an inlet portion and an outlet portion, the inlet portion for fluid communication with the chiller system, the degassing membrane to pass contamination from the inlet portion to the outlet portion; a valve coupled to the outlet portion of the purge chamber, the valve providing an exit for contamination from the outlet portion of the purge chamber; and a controller to open or close the valve in response to pressure in the outlet portion of the purge chamber.
摘要:
A refrigerant recovery unit is provided and includes a safe purging mode. The safe purging mode allows non-condensable gases to be incrementally purged from a storage tank when the determined ideal vapor pressure is high, such as 40 p.s.i., in order to minimize refrigerant loss during purging. The purging can be done in small increments of time, pressure or mass. The storage tank can include a dip tube that extends into the liquid portion of the refrigerant in order to heat up the refrigerant in the tank with the heated recovered refrigerant.
摘要:
To obtain an air-conditioner apparatus that can achieve energy-saving without making refrigerant circulate up to an indoor unit and whose construction work is easy. A refrigeration cycle is configured by connecting a compressor, a four-way valve, a heat source side heat exchanger, expansion valves, and intermediate heat exchangers by piping. A heat medium circulation circuit is configured by connecting intermediate heat exchangers, pumps, and use side heat exchangers by piping. The outdoor unit that is installed in a space such as outdoors of the building and accommodates the compressor, the four-way valve, and the heat source side heat exchanger, and the relay unit that is installed in a non-subject space which is different from an indoor space and is on a installation floor separated by two or more floors and accommodates the expansion valves, the pump, and intermediate heat exchangers are connected by two pipelines. The relay unit and an indoor unit that accommodates use side heat exchangers and is installed at a position where an indoor space can be air-conditioned are connected by two pipelines from outside of the wall which is a partition between inside and outside of the room.
摘要:
In certain embodiments, removing non-condensable gas from a cooling system includes trapping contents of a discharge tube of a heat exchanger, where the heat exchanger is in thermal communication with an ambient environment at an ambient temperature. The contents of the discharge tube comprises a vapor portion of a cooling fluid, a liquid portion of the cooling fluid, and a non-condensable gas. The cooling fluid is at a subambient pressure, and the ambient temperature is lower than a boiling point of the cooling fluid. A first additional portion of the cooling fluid is inlet into the discharge tube to increase a pressure within the discharge tube. The vapor portion of the cooling fluid within the discharge tube is allowed to condense. A second additional portion of the cooling fluid is inlet to purge the non-condensable gas from the discharge tube.
摘要:
A two-phase liquid cooling system includes an active venting system for regulating an amount of non-condensable gas within the cooling system. Various venting structures may be used to remove gases from the cooling system, some of which are designed to remove the non-condensable gases and avoid removing the vapor-phase coolant. A control system activates the venting system to achieve a desired pressure, which may be based on measured process conditions within the cooling system. A venting and refilling system may serve multiple cooling systems in a parallel arrangement.
摘要:
A method and an apparatus (20) for removing non-condensable air from, and filling a predetermined amount of working fluid into, a heat dissipation device (10) are disclosed. The method includes the following steps: pumping the non-condensable air out of the heat dissipation device through an opening (12) thereof; measuring a vacuum degree of an interior of the heat dissipation device; filling a predetermined amount of working fluid into the heat dissipation device through the opening when the interior of the heat dissipation device reaches a predetermined vacuum degree; and sealing the opening of the heat dissipation device. The apparatus includes a vacuum pump (22), a vacuum gauge (26) and a fluid-storage tank (24) for executing the above pumping, measuring and filling steps, respectively.
摘要:
A process is provided for production of a refrigerating circuit comprising non-evaporable getter material, wherein said getter material, previously introduced into the same circuit, is heated to a temperature of at least 200° C. during or immediately after the circuit evacuating step, at a residual atmospheric gas pressure of not less than 10 mbar, before introduction of the mixture of cooling fluids and before the circuit sealing. Preferred is the use of zirconium-based getter alloys.
摘要:
Provision is made in a refrigeration purge system for sensing certain conditions indicative of failure of components within the system, to responsively shut-down the system and prevent refrigerant from being undesirably vented to the atmosphere. Failure conditions sensed include inadequate cooling medium to the condenser coil and failure of a relief valve.