摘要:
A refrigeration system includes a vapor compression loop and a purge system in communication with the vapor compression loop. The purge system includes at least one separator including a sorbent material to separate contaminants from a refrigerant purge gas provided from the vapor compression loop when the sorbent material is pressurized.
摘要:
A purge system for removing non-condensables from a chiller system includes a purge chamber, a plurality of carbon beds fluidly connected to the purge chamber into which a flow of refrigerant and non-condensables is selectably directed from the purge chamber to remove the non-condensables therefrom. A vent line is fluidly connected to the plurality of carbon beds to dispose of the collected non-condensables, and a heater is operably connected to the plurality of carbon beds to selectably heat one or more of the carbon beds of the plurality of carbon beds to release refrigerant therefrom and direct the released refrigerant to the purge chamber.
摘要:
A separator for removing contamination from a fluid of a heat pump includes a housing having a hollow interior, a separation component mounted within the hollow interior, and at least one turbulence-generating element positioned within the hollow interior adjacent the separation component.
摘要:
A thermal management system includes a closed-circuit refrigeration system (CCRS) that includes a vapor cycle system (VCS). The VCS includes a receiver configured to store a refrigerant fluid; a liquid separator; a compressor; a condenser; at least one evaporator configured to extract heat from at least one heat load that is in thermal conductive or convective contact with the evaporator; and a thermal energy storage (TES) that stores a phase change material. The thermal management system further includes a liquid pumping system (LPS) that includes the TES, the at least one evaporator, and the liquid separator, with the LPS further including a pump. The VCS is configured to operate one at a time in at least one of three operational modes that are a TES cooling mode, a heat load cooling mode, or a pump-down mode. The LPS is configured to operate in the heat load cooling mode.
摘要:
An apparatus for recovering refrigerant from an air conditioning system includes an evaporator arranged to receive the refrigerant from the air conditioning system and to separate it from impurities present in it, obtaining purified refrigerant, a compressor for circulating the purified refrigerant, a condenser, and a storage container arranged to contain the condensed refrigerant. The storage container defines a storage chamber arranged to contain a liquid phase of the refrigerant and a gaseous phase including a vapor component of the refrigerant and an air component. The apparatus also includes a measuring means configured to measure operating parameters of the refrigerant present in the storage chamber, purge device arranged at a purge opening configured to purge the gaseous phase present in the storage chamber responsive to the operating parameters, and at least one first separation chamber connected to the storage container.
摘要:
An evaporator or a condenser includes a surface on which the operating liquid is arranged. Further, turbulence generators are provided to generate turbulences in the operating liquid located on the operating surface. In the condenser, alternatively or additionally, a laminarizer is present to make the vapor stream laminar provided by the compressor. On the evaporator side, the evaporation efficiency is increased and, on the condenser side, the condenser efficiency is increased, which may be used for a substantial reduction in size without loss of power of these components, in particular for a heat pump for heating a building.
摘要:
The purpose of the present invention is to achieve stable operation when using a low pressure, low GWP refrigerant. In the present invention, a control device (16) is provided with an estimation unit (31), a determination unit (32), and an activation control unit (33). The estimation unit (31) estimates the amount of air entering using a degree of influence of air entering, which represents the ease with which air enters determined by the structure of the chiller, and a variable obtained by a function including pressure as a parameter. The determination unit (32) determines whether a total value for the amount of air entering is greater than or equal to a preset tolerance value. The activation control unit (33) activates a bleed device when the total value of the amount of air entering is equal to or greater than the tolerance value.
摘要:
An air drying system includes a first air dryer that receives ambient air and provides as output exceptionally dry air having a moisture concentration of approximately 16 ppm or below, a second air dryer that receives ambient air and provides as output exceptionally dry air having a moisture concentration of approximately 16 ppm or below, and a valve coupled to and selectively switching between output from the air dryers to provide exceptionally dry air, where one of the first and second air dryers is automatically regenerated while the valve switches to provide exceptionally dry air from an other one of the first and second air dryers. The air dryers may remove moisture from ambient air by cooling the ambient air to approximately −57° C. Each of the air dryers may include a heat sink section, a cooling section (possibly with cooling elements), and an air flow section.
摘要:
A system includes a condenser and an evaporator. The condenser is configured to condense a working fluid, and the evaporator is configured to evaporate the working fluid. The system also includes piping that is configured to circulate the working fluid between the condenser and the evaporator. In addition, the system includes a low point configured to collect condensed working fluid. A controller is configured to selectively enable heating of the condensed working fluid collected within the low point based on a working fluid pressure of the low point.
摘要:
Refrigeration systems with a purge for removing non-condensables from an environmentally-suitable chiller refrigerant are provided. The refrigeration systems utilize an environmentally-suitable chiller refrigerant with a 100 year direct global warming potential (GWP) of less than 150. The refrigeration systems further include a remover to remove refrigerant-harmful gases from the chiller refrigerant.