Abstract:
Analysis of energy emanating from a source having a focal plane by converting the energy from the source into modulated spectral components simultaneously distributed according to frequency along a flat field, using, for example, a modulator, and then detecting and demodulating the spectral components, for example by a fast Fourier transform or synchronous demodulator with a ruled grating interposable between the source and the detector and a linear variable bandpass filter interposable between the source and the detector.
Abstract:
There is presented a multipoint measurement system comprising light sources (1, 2); a plurality of illuminating fibers (5, 6) for transmitting light from the light sources to a sample so as to illuminate a plurality of points of the sample (A, B); a plurality of receiving fibers (8, 9) for collecting light beams including transmitted, reflected, scattered light beams at the plurality of points; a beam selector (10) which comprises a rotatable disk (12) having an aperture for transmitting a light beam collected by one of the plurality of receiving fibers (8, 9) through the receiving fiber (11); and an MCPD (4). When the rotatable disk (12) is rotated so that the aperture is displaced to and stops at a position at which light at the desired channel passes through, it is possible to perform measurement only on the light passing through the corresponding receiving fiber (8, 9, 11). Light at any other channel may be measured by rotating the rotatable disk (12) by a predetermined angle.
Abstract:
There is provided spectral discrimination apparatus for use in a scanning optical microscope, the spectral discrimination apparatus comprising dispersive means (31) and frequency selective means including a rotatable disc (36) or discs. The discs are formed with apertures or spiral slots which, on rotation of the disc or discs, controls the frequency of light transmitted by the apparatus. The apparatus includes a detector (39) for receiving light from the frequency selective means. The, or each, rotatable disc (36) is positioned at an aperture plane after the dispersive means (31), although this is not essential if the rotatable disc has its outer periphery shaped to provide a cam surface engaged by a cam follower. There is also provided a method of spectral discrimination in a scanning optical microscope, comprising dispersing the light and passing the light through frequency selective means in which the form of rotating discs controls the frequency of transmitted light.
Abstract:
Method and apparatus for analyzing energy emanating from a source by converting energy from the source into spectral components distributed according to frequency along a flat field, combining the spectral components into a beam, detecting the beam which combines the spectral components and demodulating the spectral components.
Abstract:
The invention relates to a method of determining mainly the compressibility number K, the standard volumetric gross calorific value Hv,n and the standard density ρn of test gases using values determined from a spectrum of the test gases. The invention describes various approaches of translating the values for determining the desired values using the data of the spectrum in the operational condition to the standard reference condition using two-step iteration processes without having to subject the test gases to time-consuming treatments. The invention further relates to devices for determining the values required for the methods and which further develop devices for carrying out the methods.
Abstract translation:本发明涉及一种使用确定的值来确定测试气体的压缩性数K,标准体积总热值H H v,n N和标准密度r H n N n N的方法 从一系列测试气体。 本发明描述了使用两步迭代过程使用操作条件下的频谱数据到标准参考条件来将用于确定期望值的值转换的各种方法,而不必对测试气体进行耗时的处理。 本发明还涉及用于确定所述方法所需的值并进一步开发用于执行所述方法的装置的装置。
Abstract:
The invention relates to a spectrometry installation comprising an inlet, optical fiber means suitable for receiving an inlet beam and delivering a spectrally dispersed image of the beam which image is limited to a selected spectral band, a multi-channel detection module receiving said spectral image, and processor means. The optical filter means are provided with a deflector stage. Control means are associated with the optical deflector means to define the spectral band in terms of center frequency and band width, and control means are associated therewith for displacing the spectral image over the detection module. An electronic control unit is provided to control the control means and to control the processor means in a plurality of operating modes, each of which comprises joint control of the selected spectral band, of the displacement of the spectral image, and of the processor means, for the purpose of selectively using a particular set of detector components.
Abstract:
A holographic grating spectrophotometer for detecting ozone and sulphur dioxide in the atmosphere is described which provides automatic calibration and which provides automatic linearity correction for the photomultiplier tube. Automatic calibration is provided by using a computer to control a stepper motor to move the grating so that the photomultiplier tube receives maximum intensity at the calibration wavelength of 302.1 nm from a mercury source. Automatic linearity correction is obtained by cycling a wavelength selection mask across exit slits located in the focal plane of the device and firstly combines separately taken counts of two different wavelengths and comparing this sum with the sum of counts of these wavelengths taken simultaneously. The difference is used to calculate photomultiplier tube deadtime and improve accuracy of the results. In a preferred embodiment five wavelengths are used to calculate ozone and sulphur dioxide levels, and a stepper motor driving a cylindrical wavelength selection mask permits exit slits to be exposed to predetermined wavelengths one at a time.