Abstract:
A light detection module has N optical channels, each with an optical filter, a detector, and an amplifier; and an N×1 switch with N input ports each connected to one corresponding output port of each channel to receive an amplified detector output corresponding to a filtered optical intensity incident on that detector. The switch cycles between channels, connecting each amplified detector output in turn to the output port. An ADC samples a time dependent optical intensity signal from the switch, generating a corresponding ADC digital signal output. A microcontroller, connected to the N×1 switch and the ADC, controls acquisition by the ADC to provide a digital voltage data stream from each channel; making the average optical intensity value characterizing the voltage data stream available from each channel at a digital output port of the microcontroller, as N data values, characterizing the light incident on the N channels of the module.
Abstract:
A fiber grating demodulation system for enhancing spectral resolution by finely adjusting an imaging focus mirror, includes a laser pump source, a wavelength division multiplexer, a fiber Bragg grating, a diaphragm, a slit, a collimating mirror, a light splitting grating, an imaging focus mirror, a linear array detector. The laser pump source, the wavelength division multiplexer, the fiber Bragg grating are connected in sequence, the wavelength division multiplexer is connected to the diaphragm. Light emitted from the laser pump source is multiplexed by the wavelength division multiplexer and then enters the fiber Bragg grating, a reflection spectrum of the fiber Bragg grating enters the slit of the fiber grating demodulation system as injected light. After passing through the slit, the injected light is reflected by the collimating mirror, the light splitting grating, and the imaging focus mirror in sequence, and is finally converged to the linear array detector.
Abstract:
A method for calibrating a monochromator to compensate for mechanical imperfections in its diffraction grating and grating drive assembly employs a two stage interactive procedure which permits the use of small (0.2 nm) spectral regions for the identification of emission lines. An iterative, self-consistent, discrete Fourier transform is used for the determination of multiple positioning correction terms. When the Fourier calculations are completed, the results of the calibration procedure are presented by the system to the analyst for acceptance. If accepted, the positioning error of the primary calibration line is measured, stored and used by the system to maintain a zero centered distribution of positioning errors each time the monochromator is reinitialized.
Abstract:
A method and apparatus for determining the characteristics of materials, particularly of semi-conductors, semi-conductor heterostructures and semi-conductor interfaces by the use of photoreflectance, in which monochromatic light and an acousto-optically modulated light beam reflected from the sample is detected to produce a d.c. signal and an a.c. signal, whereby the d.c. signal is applied to one input of a computer and the a.c. signal is used with another input of the computer which controls the light intensity of the monochromatic light impinging on the sample to maintain the d.c. signal substantially constant. The modulation frequency of the modulated pump beam and/or the wavelength of the monochromatic light can also be varied by the computer. Information about trap times can be obtained by determining the dependence of the in-phase signal on the pump modulating frequency, respectively.
Abstract:
The invention relates to a spectrometry installation comprising an inlet, optical fiber means suitable for receiving an inlet beam and delivering a spectrally dispersed image of the beam which image is limited to a selected spectral band, a multi-channel detection module receiving said spectral image, and processor means. The optical filter means are provided with a deflector stage. Control means are associated with the optical deflector means to define the spectral band in terms of center frequency and band width, and control means are associated therewith for displacing the spectral image over the detection module. An electronic control unit is provided to control the control means and to control the processor means in a plurality of operating modes, each of which comprises joint control of the selected spectral band, of the displacement of the spectral image, and of the processor means, for the purpose of selectively using a particular set of detector components.
Abstract:
In its preferred embodiment, a scanning monochromator uses a pulse-driven micro-stepping motor to drive a spectral-dispersion element via a reduction-gear harmonic drive. The motor is directly coupled to the input hub of the reduction-gear drive, and the output hub of the reduction-gear drive directly supports the spectral-dispersion element. By selecting a motor with a great number of steps per revolution, and a harmonic drive with a great reduction ratio, a resolution of 5 million pulsed steps is available, per single rotation of the output hub of the reduction-gear drive. This translates into more than 600,000 incremental angular-displacement steps over a usable 45.degree. range of dispersion-element rotation.
Abstract:
A fiber grating demodulation system for enhancing spectral resolution by finely adjusting an imaging focus mirror, includes a laser pump source, a wavelength division multiplexer, a fiber Bragg grating, a diaphragm, a slit, a collimating mirror, a light splitting grating, an imaging focus mirror, a linear array detector. The laser pump source, the wavelength division multiplexer, the fiber Bragg grating are connected in sequence, the wavelength division multiplexer is connected to the diaphragm. Light emitted from the laser pump source is multiplexed by the wavelength division multiplexer and then enters the fiber Bragg grating, a reflection spectrum of the fiber Bragg grating enters the slit of the fiber grating demodulation system as injected light. After passing through the slit, the injected light is reflected by the collimating mirror, the light splitting grating, and the imaging focus mirror in sequence, and is finally converged to the linear array detector.
Abstract:
In a spectrophotometer application where high speed positioning is critical, a galvanometer in conjunction with a microprocessor controlled hybrid digital/analog servo system is used to rotate a diffraction grating for wavelength selection. A table containing digital position information for all wavelengths is accessed by the microprocessor to perform wavelength changes. The use of the table permits the determination of grating position to yield a desired wavelength for a system where the axis of rotation does not intersect a point on the surface of the diffraction grating. That is, the diffraction grating can be rotated about an axis coinciding with its center of gravity.
Abstract:
Apparatus for detecting an anomaly, (e.g. the presence of a hydrocarbon seep) at or near a water or land surface comprises means for generating a beam, preferably a pulsed beam, of primary light radiation, preferably ultra-violet light, and directing the beam towards the surface. The beam is sufficiently intense and of such a spectral composition that the beam causes the anomaly, if present, to emit secondary light radiation. The apparatus also comprises means for collecting the secondary light radiation, or means for collecting solar induced secondary light radiation, spectral analysis means for analysing the spectrum of the secondary radiation, and a high resolution, multi-element digitizing detector for recovering the analyzed secondary radiation. The detector has a plurality of detection channels positioned across the spectrum of the backscattered primary radiation and emitted secondary radiation, the channels being software configurable and under the control of a digitally addressable computer-operated controller. The concentration of used channels across the plurality of channels is adjustable and increasable in the regions of the spectrum of greatest interest and decreasable in the regions of least interest.
Abstract:
Iterative compensation of drift of peak positions of spectral lines is effected in a spectral monochromator including a grating, a detector of spectral fractions of a spectral band, a stepper motor for varying relative orientation of the grating and the detector, and a computer. Computer-defined spectral windows each encopasses a spectral band and has an initial spectral center. Each window is scanned to determine a peak spectral position. Calculation is made for determining a spectral position error of the peak position from the initial center for each corresponding window. A functional average of the offsets for the peaks is calculated as a linear function of window position, and a revised spectral center for each window is calculated as being equal to the initial center plus the functional average for the window position determined from the linear function. Each window is shifted correspondingly. The step of successively scanning through each window is repeated to determine a new peak position for each corresponding band, whereby each new peak position is maintained near the spectral center of each corresponding window.