Abstract:
An electronic detection system includes an electronic device, a detector and a memory. The electronic device includes a circuit substrate, a plurality of photoelectric components, and a plurality of tunable current source circuits. Each photoelectric component has one or more peak emission wavelengths in response to a plurality of current values. The tunable current source circuits are disposed on the circuit substrate and electrically connected to the photoelectric components. The detector captures a feature value of a corresponding one of the photoelectric components. One or more lookup tables stored in the memory are based on the feature values and the current values of the photoelectric components. Each tunable current source circuit transmits an input current to a corresponding one of the photoelectric components in response to the lookup table(s) to perform a selected peak emission wavelength.
Abstract:
An optical switch using a Michelson interferometer and differential onset of optical nonlinearity. Modulation of optical signals can occur at speeds that exceed that of electronic devices.
Abstract:
Embodiments are disclosed relating to a refractively-scanning interferometer comprising an aperture that receives an incident light beam at a receiving angle, a beam splitter configured to split the incident light beam into a first beam and a second beam, a first and a second reflector arranged to reflect the first beam and second beam, respectively, towards a combining optical element, and a refractive Optical Path Difference (rOPD) assembly interposed between the beam splitter and the first reflector, wherein the rOPD Assembly refracts the first light beam an even number of times with induced phase discrepancy being a vector sum of a first phase discrepancy induced by a first refraction and a second phase discrepancy induced by a second refraction, the rOPD Assembly being configured such that the first phase discrepancy is substantially opposite in direction to the second phase discrepancy, a portion of the first and second phase discrepancies cancelling one another out to decrease magnitude of the phase discrepancy.
Abstract:
The present document discloses a method for measuring the carrier-envelope phase, CEP, offset of ultrashort light pulses, the method comprising: generating an optical interference signal encoding the CEP offset of a light pulse to be measured; applying at least two spectral filters in parallel to the generated interference signal, wherein the transmission functions of the spectral filters are periodic and the at least two spectral filters have partial or fully orthogonal components among themselves; detecting each signal filtered by each of the at least two spectral filters to obtain a magnitude for each of the filtered signals; converting the two obtained magnitudes to a polar representation having a radius and an angle; outputting the CEP offset from the angle of the converted polar representation. It is also disclosed a corresponding system, a field-resolved spectrometer including the system and the use of the system in spectroscopy or in field-resolved spectroscopy.
Abstract:
An optical switch using a Michelson interferometer and differential onset of optical nonlinearity. Modulation of optical signals can occur at speeds that exceed that of electronic devices.
Abstract:
An interferometer for use in remote sensing systems includes a beam splitter that separates an input wave into a reflected wave, which travels along a first optical path within an upper interferometer arm, and a transmitted wave, which travels along a second optical path within a lower interferometer arm. The reflected and transmitted waves are subsequently recombined by the beam splitter for imaging onto a sensor. A highly dispersive element is incorporated into at least one of the pair of interferometer arms. Due to anomalous dispersion, a frequency shift in a wave transmitted through a dispersive element changes the optical path length within its corresponding arm. As a result, the recombined wave produces an interference pattern with a measurable phase change that can be utilized to calculate the original frequency shift in the input wave with great precision and potential sub-Hertz sensitivity.
Abstract:
Embodiments are disclosed relating to a refractively-scanning interferometer comprising an aperture that receives an incident light beam at a receiving angle, a beam splitter configured to split the incident light beam into a first beam and a second beam, a first and a second reflector arranged to reflect the first beam and second beam, respectively, towards a combining optical element, and a refractive Optical Path Difference (rOPD) assembly interposed between the beam splitter and the first reflector, wherein the rOPD Assembly refracts the first light beam an even number of times with induced phase discrepancy being a vector sum of a first phase discrepancy induced by a first refraction and a second phase discrepancy induced by a second refraction, the rOPD Assembly being configured such that the first phase discrepancy is substantially opposite in direction to the second phase discrepancy, a portion of the first and second phase discrepancies cancelling one another out to decrease magnitude of the phase discrepancy.
Abstract:
An imaging apparatus includes an image sensor, an optical system, a control circuit, and a signal processing circuit. The image sensor includes a light-shielding film in which light-transmitting regions and light-shielding regions are alternately arranged in at least a first direction within a plane, a photodetector disposed opposite the light-shielding film, and an optically-coupled layer disposed between the light-shielding film and the photodetector. The optically-coupled layer includes a grating which generates a propagating light that propagates in the first direction and a transmitting light that transmits the optically-coupled layer when light of a predetermined wavelength enters the light-transmitting regions. The signal processing circuit extracts two different frames from frames included in a moving image acquired by the image sensor.
Abstract:
A Fourier Transform Spectrometer (“FTS”) system includes a Fizeau FTS having a plurality of sub-collecting elements, adjacent ones of which are separated by a gap distance, and at least one of which has an adjustable optical path. The FTS system further includes a Michelson FTS having an adjustable optical path. The FTS system further includes one or more processors configured to select spectral data collected by the Fizeau FTS corresponding to spatial frequencies for which the Fizeau FTS has a modulation transfer function (“MTF”) value above a first threshold level, to select spectral data collected by the Michelson FTS corresponding to spatial frequencies for which the Michelson FTS has a MTF value above a second threshold level, and to combine the selected spectral data from the Fizeau FTS with the selected spectral data from the Michelson FTS.