Abstract:
The light intensity ratio adjustment filter is placed between the reference surface and the sample surface of the interferometer. This light intensity ratio adjustment filter has a light intensity ratio adjustment film including an optical reflection-absorption layer and a dielectric anti-reflection layer on the surface of a transparent substrate made of glass on the sample side, and an optical anti-reflection film on the reference surface side, and acts so as to reflect part of the incident light from the surface opposite the reference surface, and after absorbing part of the remaining light, transmit the remainder towards the sample, and furthermore, absorb part of the light returned from the sample while controlling reflection, and transmit the remainder in the direction of the reference surface as the sample light.
Abstract:
A Fourier Transform Spectrometer (“FTS”) system includes a Fizeau FTS having a plurality of sub-collecting elements, adjacent ones of which are separated by a gap distance, and at least one of which has an adjustable optical path. The FTS system further includes a Michelson FTS having an adjustable optical path. The FTS system further includes one or more processors configured to select spectral data collected by the Fizeau FTS corresponding to spatial frequencies for which the Fizeau FTS has a modulation transfer function (“MTF”) value above a first threshold level, to select spectral data collected by the Michelson FTS corresponding to spatial frequencies for which the Michelson FTS has a MTF value above a second threshold level, and to combine the selected spectral data from the Fizeau FTS with the selected spectral data from the Michelson FTS.
Abstract:
Heterodyne spectrally controlled interferometry is performed by combining a delay line in Twyman-Green configuration with a Fizeau interferometer. By splitting a white-light beam in the delay line and introducing a time delay in one of the resulting beams, the delay line produces a recombined output beam with a sinusoidally modulated spectrum. By introducing a frequency shift in one of the beams in the delay line, the output beam is also continuously phase shifted in the spectral domain in a time-varying fashion, as required for heterodyne SCI.
Abstract:
The invention provides a method and a system for measuring a physical quantity by means of a tandem interferometer optical sensor system based on low-coherence interferometry. The system comprises a light system, a sensing interferometer and a polarization readout interferometer. The invention provides a polarization interferometer comprising a single birefringent wedge. The invention also provides for a dispersion-compensated optical sensor system. The invention also provides an interferometer sensitive to temperature that comprises a trajectory in a LiB3O5 crystal with an x-cut orientation.
Abstract translation:本发明提供一种通过基于低相干干涉测量的串联干涉仪光学传感器系统来测量物理量的方法和系统。 该系统包括光系统,感测干涉仪和偏振读出干涉仪。 本发明提供一种包括单个双折射楔的偏振干涉仪。 本发明还提供一种色散补偿光学传感器系统。 本发明还提供了一种对温度敏感的干涉仪,其包括具有x切割取向的L 3 N 3 O 5 O 5晶体中的轨迹。
Abstract:
A mode-monitoring system used in connection with discrete beam frequency tunable laser provides optical feedback that can be used for adjusting the laser or for other processing associated with the use of the laser. For example, the output of a frequency tunable source for a frequency-shifting interferometer can be monitored to support the acquisition or processing of more accurate interference data. A first interferometer for taking desired measurements of optical path length differences traveled by different portions of a measuring beam can be linked to a second interferometer for taking measurements of the measuring beam itself. The additional interference data can be interpreted in accordance with the invention to provide measures of beam frequency and intensity.
Abstract:
The light intensity ratio adjustment filter is placed between the reference surface and the sample surface of the interferometer. This light intensity ratio adjustment filter has a light intensity ratio adjustment film including an optical reflection-absorption layer and a dielectric anti-reflection layer on the surface of a transparent substrate made of glass on the sample side, and an optical anti-reflection film on the reference surface side, and acts so as to reflect part of the incident light from the surface opposite the reference surface, and after absorbing part of the remaining light, transmit the remainder towards the sample, and furthermore, absorb part of the light returned from the sample while controlling reflection, and transmit the remainder in the direction of the reference surface as the sample light.
Abstract:
A method and apparatus for measuring the change in refractive index of a material with respect to temperature. The invention contemplates measuring the change in length of the material with respect to temperature over a predetermined temperature range with a Fizeau Interferometer by measuring the change in length through a vacuum at a point adjacent the length to produce a first set of data. Also measured is the change in the same length of the same material with respect to temperature over the same predetermined temperature range with the Interferometer by measuring the change in the length through the material to produce a second set of data. Determining the difference between the first and second sets of data produces resulting data which is the change in refractive index of the material with respect to temperature.
Abstract:
The invention provides a method and a system for measuring a physical quantity by means of a tandem interferometer optical sensor system based on low-coherence interferometry. The system comprises a light system, a sensing interferometer and a polarization readout interferometer. The invention provides a polarization interferometer comprising a single birefringent wedge. The invention also provides for a dispersion-compensated optical sensor system. The invention also provides an interferometer sensitive to temperature that comprises a trajectory in a LiB3O5 crystal with an x-cut orientation.
Abstract translation:本发明提供一种通过基于低相干干涉测量的串联干涉仪光学传感器系统来测量物理量的方法和系统。 该系统包括光系统,感测干涉仪和偏振读出干涉仪。 本发明提供一种包括单个双折射楔的偏振干涉仪。 本发明还提供一种色散补偿光学传感器系统。 本发明还提供了一种对温度敏感的干涉仪,其包括具有x切割取向的L 3 N 3 O 5 O 5晶体中的轨迹。
Abstract:
A mode-monitoring system used in connection with discrete beam frequency tunable laser provides optical feedback that can be used for adjusting the laser or for other processing associated with the use of the laser. For example, the output of a frequency tunable source for a frequency-shifting interferometer can be monitored to support the acquisition or processing of more accurate interference data. A first interferometer for taking desired measurements of optical path length differences traveled by different portions of a measuring beam can be linked to a second interferometer for taking measurements of the measuring beam itself. The additional interference data can be interpreted in accordance with the invention to provide measures of beam frequency and intensity.
Abstract:
A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10.sup.8. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing.