Abstract:
A method of detecting the presence or absence of a disease in a patient wherein said disease is accompanied by deficient levels of S-adenosylmethionine comprising: identifying a patient that is suspected of having said disease or is at risk of having said disease; obtaining a biological sample from said patient; determining the level of S-adenosylmethionine in said biological sample using an antibody derived from a hapten analog of S-adenosylmethionine; and correlating the level of S-adenosylmethionine in said biological sample with the presence or absence of said disease. The invention also provides methods for measuring SAH which is used to determine the methylation index (ratio of SAM/SAH) in biological fluids which is indicative of the health status of an individual.
Abstract:
The invention provides a method of detecting the presence, absence or severity of a disease in a patient wherein said disease is accompanied by decreased level of S-adenosylmethionine, or increased level of S-adenosylhomocysterine, or reduced methylation index comprising: identifying any individual or a patient that is suspected of having said disease or is at risk of having said disease; obtaining a biological sample from said patient; determining the level of SAM in said biological sample using an antibody derived from a hapten analog of SAM, SAH; and correlating the levels of SAM, SAH and MI in said biological sample with the presence, absence, or severity of said disease. The invention also provides methods for determining methylation index in biological fluids which is indicative of the health status of an individual. Additionally, the invention includes colloidal gold test strips and homogenous enzyme immunoassays which are useful for determining S-adenosylmethionine and S-adenosylhomocysteine.
Abstract:
The invention provides a method of detecting the presence, absence or severity of a disease in a patient wherein said disease is accompanied by decreased level of S-adenosylmethionine, or increased level of S-adenosylhomocysterine, or reduced methylation index comprising: identifying any individual or a patient that is suspected of having said disease or is at risk of having said disease; obtaining a biological sample from said patient; determining the level of SAM in said biological sample using an antibody derived from a hapten analog of SAM, SAH; and correlating the levels of SAM, SAH and MI in said biological sample with the presence, absence, or severity of said disease. The invention also provides methods for determining methylation index in biological fluids which is indicative of the health status of an individual. Additionally, the invention includes colloidal gold test strips and homogenous enzyme immunoassays which are useful for determining S-adenosylmethionine and S-adenosylhomocysteine.
Abstract:
Disclosed is a method for determining the severity of hemophilia, the method including the steps of: coagulating a blood specimen to acquire a coagulation waveform; acquiring an average change rate of a coagulation rate from the coagulation waveform; and determining the severity of hemophilia in the blood specimen based on the average change rate of the coagulation rate.
Abstract:
The present invention relates to means and methods for determining whether a patient is in need of a PD-L1 inhibitor cotherapy. A patient is determined to be in need of the PD-L1 inhibitor cotherapy if a low or absent ER expression level and an expression level of programmed death ligand 1 (PD-L1) that is increased in comparison to a control is measured in vitro in a sample from the patient. The patient is undergoing therapy comprising a modulator of the HER2/neu (ErbB2) signaling pathway (like Trastuzumab) and a chemotherapeutic agent (like dodetaxel) or such a therapy is contemplated for the patient. Also provided herein are means and methods for treating a cancer in a cancer patient for whom therapy comprising a modulator of the HER2/neu (ErbB2) signaling pathway (like Trastuzumab) and a chemotherapeutic agent (like dodetaxel) is contemplated, wherein the patient is to receive PD-L1 inhibitor cotherapy.
Abstract:
A handheld medical analyzer works with different disposable application cartridges to perform a variety of interrogations on specimen samples. One application includes attaching a biological microelectromechanical systems (BioMEMS) cartridge that generates blood coagulation profiles indicative of particular forms of coagulation disorders. The device makes coagulopathy testing simpler for small hospitals, clinics, ambulances, remote locations and individuals and permits for a larger number of parallel or serial devices operating simultaneously. One insertion of a cartridge actuates an oscillating circular motion to generate a blood coagulation profile based on a change in rotational motion as blood coagulates in a sample. Change in rotational motion is analyzed through a video camera such as in a smartphone and is plotted to show an amplitude over time. Actuation of the BioMEMS can be achieved by magnetic actuation of a motor controlled by an iPhone or a smart phone to provide a specific rotational pattern.
Abstract:
A pocket former may include a pocket former body, the pocket former body having an outer surface. The pocket former may further include a collapsible element, the collapsible element formed on the outer surface of the pocket former body. The collapsible element may extend radially outwardly from the pocket former body.
Abstract:
The invention provides a method of detecting the presence or absence of a disease in a patient wherein said disease is accompanied by deficient levels of S-adenosylmethionine comprising: identifying a patient that is suspected of having said disease or is at risk of having said disease; obtaining a biological sample from said patient; determining the level of S-adenosylmethionine in said biological sample using an antibody derived from a hapten analog of S-adenosylmethionine; and correlating the level of S-adenosylmethionine in said biological sample with the presence, absence, or severity of said disease. The invention also provides methods for measuring SAH which is used to determine the methylation index (ratio of SAM/SAH) in biological fluids which is indicative of the health status of an individual. Additionally, the invention includes test strips which are useful for determining S-adenosylmethionine and S-adenosylhomocysteine.
Abstract:
The invention provides a method of detecting the presence or absence of a disease in a patient wherein said disease is accompanied by deficient levels of S-adenosylmethionine comprising: identifying a patient that is suspected of having said disease or is at risk of having said disease; obtaining a biological sample from said patient; determining the level of S-adenosylmethionine in said biological sample using an antibody derived from a hapten analog of S-adenosylmethionine; and correlating the level of S-adenosylmethionine in said biological sample with the presence, absence, or severity of said disease. The invention also provides methods for measuring SAH which is used to determine the methylation index (ratio of SAM/SAH) in biological fluids which is indicative of the health status of an individual. Additionally, the invention includes test strips which are useful for determining S-adenosylmethionine and S-adenosylhomocysteine.
Abstract:
Disclosed herein are antibodies having binding specificity to the amino acid sequences Ala Ser Ser Gly Leu Thr Val Glu Val Asp (SEQ ID NO:1) and Thr Val Glu Val Asp (SEQ ID NO:14), and methods of detecting cell death in a sample, comprising contacting the sample with a first antibody specific for a C-terminal amino acid sequence Ala Ser Ser Gly Leu Thr Val Glu Val Asp (SEQ ID NO:1) or Thr Val Glu Val Asp (SEQ ID NO:14) of a CK18 protein fragment having a C-terminal amino acid sequence of Val Glu Val Asp (SEQ ID NO:2) and a second antibody that specifically binds an epitope that is present in both full-length CK18 and the CK18 protein fragment, and that does not overlap with SEQ ID NO:1 or SEQ ID NO:14, under conditions such that the CK1 8 protein fragment present in the sample specifically binds to the first antibody and the second antibody, wherein one of the antibodies is bound to a solid support and the other antibody is bound to a detection moiety capable of producing a signal; optionally removing any unbound or excess material; and detecting the signal from the detection moiety, wherein the signal is positively correlated with the presence of the CK18 protein fragment in the sample.