Abstract:
The present invention is related to the field of microfluidics and compound distribution within microfluidic devices and their associated systems. In one embodiment, present invention aims to solve the problem of molecule and compound absorbency into the materials making up laboratory equipment, microfluidic devices and their related infrastructure, without unduly restricting gas transport within microfluidic devices.
Abstract:
Techniques for optical analysis of fluid samples using sensors and water enhancing agents for in-line measurements with a continuous flow of the fluid samples are provided. In one aspect, a device includes: at least one reagent dispenser located at an introduction point along a conduit, the conduit being configured to contain a flow of a fluid sample; at least one first detector located at a first detection point along the conduit downstream from the introduction point; and at least one second detector located at a second detection point along the conduit downstream from the first detection point, wherein the at least one first detector and the at least one second detector are configured to make optical measurements of the fluid sample. A method employing the device is also provided.
Abstract:
The present invention provides devices and systems for use at the point of care. The methods devices of the invention are directed toward automatic detection of analytes in a bodily fluid. The components of the device are modular to allow for flexibility and robustness of use with the disclosed methods for a variety of medical applications.
Abstract:
A sample analyzer includes: a preparation unit configured to mix a sample with a reagent to prepare a measurement specimen; a measurement unit configured to irradiate the measurement specimen with light to acquire optical time series data; and a controller configured to divide the time series data acquired by the measurement unit into data segments, determine first regression lines respectively of the data segments, select the first regression line with the highest matching degree with the time series data, set as an analysis target region a region of the time series data matching with the selected first regression line among the time series data acquired by the measurement unit, determine a second regression line using the time series data included in the set analysis target region, and perform an analysis using the second regression line.
Abstract:
A continuous process for performing multiple nucleic acid amplification assays, where at least a portion of a second subset of reaction mixtures are transferred to a heater while a first subset of reaction mixtures are being subjected to conditions for performing a nucleic acid amplification assay. During the process, a plurality of reaction mixtures from the first and second subsets of reaction mixtures are simultaneously subjected to conditions sufficient to perform multiple nucleic acid amplification assays in the reaction mixtures. The presence or absence of a target nucleic acid in the first subset of reaction mixtures is determined while the reaction mixtures are in the heater.
Abstract:
To minimize cross talk in systems and methods for detecting two or more different optical signals emitted from each of a plurality of reaction receptacles, an excitation signal associated with each of the optical signals has a known excitation frequency, and any detected signal having a frequency that is inconsistent with the excitation frequency is discarded. The receptacles are moved relative to optical sensors configured to detect each unique optical signal from an associated receptacle, and to further minimize cross talk, the optical sensors are arranged so that only one reaction receptacle at a time is in a signal detecting position with respect to one of its associated optical sensors, and the optical sensors are grouped by the optical signal they are configured to detect so that a first optical signal is detected from each of the reaction receptacles before a second optical signal is detected from the reaction receptacles.
Abstract:
The present invention describes a method that is comprised of creating a set of synthetic samples that mimic a dynamic process or a specific process step or a variation thereof, to be used to develop multivariate monitoring calibrations and process supervisory control systems.
Abstract:
The present invention provides devices and systems for use at the point of care. The methods devices of the invention are directed toward automatic detection of analytes in a bodily fluid. The components of the device are modular to allow for flexibility and robustness of use with the disclosed methods for a variety of medical applications.
Abstract:
Disclosed is a sample analyzer configured to analyze a concentration of a target material contained in a sample based on a value representing a slope of a regression line which is based on data values included in an interval from a start point to an endpoint. The start point is detected by a predetermined method and the endpoint is detected by a predetermined method.
Abstract:
To change a photometric time for each item or to change a measurement time for each specimen so that time required for biochemical measurement can be reduced, an index that indicates an end of a reaction is required. Unfortunately, however, no methods have been available for determining the end of the reaction. In measuring a substance to be measured contained in a sample, a parameter in an approximate expression is calculated using a measured value that changes with time, a degree of convergence of a reaction is determined according to a degree of convergence of the parameter, and a measured value at the end of the reaction is calculated using the parameter at a point in time at which it is determined that the reaction has converged.