Abstract:
Method and apparatus for implementing an optimized credit return mechanism for packet sends. A Programmed Input/Output (PIO) send memory is partitioned into a plurality of send contexts, each comprising a memory buffer including a plurality of send blocks configured to store packet data. A storage scheme using FIFO semantics is implemented with each send block associated with a respective FIFO slot. In response to receiving packet data written to the send blocks and detecting the data in those send blocks has egressed from a send context, corresponding freed FIFO slots are detected, and a lowest slot for which credit return indicia has not be returned is determined. The highest slot in a sequence of freed slots from the lowest slot is then determined, and corresponding credit return indicia is returned. In one embodiment an absolute credit return count is implemented for each send context, with an associated absolute credit sent count tracked via software that writes to the PIO send memory, with the two absolute credit counts used for flow control.
Abstract:
A collaborative bus arbitration multiplex architecture includes of a main memory, a bus, a plurality of BMPDs, and a BAM. Arbitration can be done according to the following steps of awaiting whether any of the BMPDs renders any request for access; B) identifying whether the access authority of the bus is being fetched by any other BMPDs; C) identifying whether the main memory to which the request for access corresponds have any record that the corresponding BMPD needs special treatment; D) identifying whether all of the BMPDs have rendered the requests for access; E) according to a generic arbitration principle, identifying whether the corresponding BMPDs indicated in the steps C) and D) win the access authority; F) yielding the access authority of the bus to the BMPDs winning the access authority as indicated in the step E); and G) accessing the main memory.
Abstract:
Devices, systems, methods, and computer-readable mediums for arbitrating bus transactions on a communications bus based on health information are disclosed. Health information of master devices can be used to adjust priorities of bus transactions from master devices to meet quality of service requirements of the master devices. In one embodiment, a bus interconnect is provided and configured to communicate bus transactions from any of a plurality of master devices to slave device(s) coupled the bus interconnect. The bus interconnect is further configured to map health information for each of the plurality of master devices into virtual priority space. The bus interconnect is further configured to translate the virtual priority space into a physical priority level for each of the plurality of master devices. The bus interconnect is further configured to arbitrate bus transactions for the plurality of master devices based on physical priority level for the plurality of master devices.
Abstract:
A method of controlling access between multiple master devices to a shared resource is disclosed. The method includes receiving a request to access the shared resource from a first master device, and determining availability of the shared resource. If the shared resource is available, a successful response is returned to the first master device to establish access by the first master device to the shared resource. If the shared resource is unavailable, a failed response is returned to the first master device. During the resource's unavailability, it is automatically monitored for when the shared resource becomes available. Once available, the first master device is automatically notified.
Abstract:
Method and apparatus for implementing an optimized credit return mechanism for packet sends. A Programmed Input/Output (PIO) send memory is partitioned into a plurality of send contexts, each comprising a memory buffer including a plurality of send blocks configured to store packet data. A storage scheme using FIFO semantics is implemented with each send block associated with a respective FIFO slot. In response to receiving packet data written to the send blocks and detecting the data in those send blocks has egressed from a send context, corresponding freed FIFO slots are detected, and a lowest slot for which credit return indicia has not be returned is determined. The highest slot in a sequence of freed slots from the lowest slot is then determined, and corresponding credit return indicia is returned. In one embodiment an absolute credit return count is implemented for each send context, with an associated absolute credit sent count tracked via software that writes to the PIO send memory, with the two absolute credit counts used for flow control.
Abstract:
Method and apparatus for implementing an optimized credit return mechanism for packet sends. A Programmed Input/Output (PIO) send memory is partitioned into a plurality of send contexts, each comprising a memory buffer including a plurality of send blocks configured to store packet data. A storage scheme using FIFO semantics is implemented with each send block associated with a respective FIFO slot. In response to receiving packet data written to the send blocks and detecting the data in those send blocks has egressed from a send context, corresponding freed FIFO slots are detected, and a lowest slot for which credit return indicia has not be returned is determined. The highest slot in a sequence of freed slots from the lowest slot is then determined, and corresponding credit return indicia is returned. In one embodiment an absolute credit return count is implemented for each send context, with an associated absolute credit sent count tracked via software that writes to the PIO send memory, with the two absolute credit counts used for flow control.
Abstract:
A device includes a first interface unit connected to a first controller area network (CAN) bus, a second interface unit connected to a second CAN bus, and a control unit configured to identify, in a case where transmission of a CAN frame is started, a CAN bus detected to be in a dominant state first after end of arbitration from the first CAN bus or the second CAN bus, as a CAN bus to which a transmission source device of the CAN frame is connected.
Abstract:
Method and apparatus for implementing an optimized credit return mechanism for packet sends. A Programmed Input/Output (PIO) send memory is partitioned into a plurality of send contexts, each comprising a memory buffer including a plurality of send blocks configured to store packet data. A storage scheme using FIFO semantics is implemented with each send block associated with a respective FIFO slot. In response to receiving packet data written to the send blocks and detecting the data in those send blocks has egressed from a send context, corresponding freed FIFO slots are detected, and a lowest slot for which credit return indicia has not be returned is determined. The highest slot in a sequence of freed slots from the lowest slot is then determined, and corresponding credit return indicia is returned. In one embodiment an absolute credit return count is implemented for each send context, with an associated absolute credit sent count tracked via software that writes to the PIO send memory, with the two absolute credit counts used for flow control.
Abstract:
Method and apparatus for implementing an optimized credit return mechanism for packet sends. A Programmed Input/Output (PIO) send memory is partitioned into a plurality of send contexts, each comprising a memory buffer including a plurality of send blocks configured to store packet data. A storage scheme using FIFO semantics is implemented with each send block associated with a respective FIFO slot. In response to receiving packet data written to the send blocks and detecting the data in those send blocks has egressed from a send context, corresponding freed FIFO slots are detected, and a lowest slot for which credit return indicia has not be returned is determined. The highest slot in a sequence of freed slots from the lowest slot is then determined, and corresponding credit return indicia is returned. In one embodiment an absolute credit return count is implemented for each send context, with an associated absolute credit sent count tracked via software that writes to the PIO send memory, with the two absolute credit counts used for flow control.
Abstract:
Method and apparatus for implementing an optimized credit return mechanism for packet sends. A Programmed Input/Output (PIO) send memory is partitioned into a plurality of send contexts, each comprising a memory buffer including a plurality of send blocks configured to store packet data. A storage scheme using FIFO semantics is implemented with each send block associated with a respective FIFO slot. In response to receiving packet data written to the send blocks and detecting the data in those send blocks has egressed from a send context, corresponding freed FIFO slots are detected, and a lowest slot for which credit return indicia has not be returned is determined. The highest slot in a sequence of freed slots from the lowest slot is then determined, and corresponding credit return indicia is returned. In one embodiment an absolute credit return count is implemented for each send context, with an associated absolute credit sent count tracked via software that writes to the PIO send memory, with the two absolute credit counts used for flow control.