Abstract:
A method for stabilizing a neutralization slag of uranium associated zirconium and zirconia, and a stabilization agent used therein are disclosed. The stabilization agent includes the following components in parts by weight: a pretreatment agent of 2-8 parts, anhydrous calcium chloride of 2-6 parts, an adsorbent of 3-5 parts and a stabilizer of 4-9 parts. The stabilization agent is used to stabilize the uranium that is existed in the neutralization slag in a waste slag. The method includes the following steps: the pretreatment agent is used to alkalize and disperse the neutralization slag; soluble calcium salt is added to cement the neutralization slag; and the adsorbent and the stabilizer are used as a composite material to passivate the neutralization slag. The method has low cost, fast effectiveness, simple process, easy operation, and long-term stable remediation efficiency, which can be applied to the treatment and disposal of associated radioactive waste residues.
Abstract:
The invention relates to a device (10) for inerting radioactive waste, comprising: a mixer (12) comprising a radioactive waste inlet (56), a conditioning unit able to house a container, a transfer member connecting the mixer and a container accommodated by the conditioning unit, a handling screw, the handling screw comprising: two ends, one end being connected to the radioactive waste inlet (56), a cradle elongated along an axis between the two ends and delimiting an inner volume, the inner volume of the cradle being able to accommodate matter toward the mixer (12), a transfer rotor, in particular a coreless screw, extending in the inner volume, and a motor able to rotate the transfer rotor.
Abstract:
The invention relates to a method for encapsulating radioactive waste, the method comprising the following steps: mixing dry radioactive waste, water and a binder in a mixer (12) to form a mixture (122), transferring the mixture (122) from the mixer (12) to an encapsulating unit (20), the mixture (122) being in contact with a transfer surface (84) of a transfer member (22), producing a test sample comprising dry radioactive waste, water and a binder, and characterizing the adherence and/or flow of the test sample on the transfer surface (84).
Abstract:
Treatment of a radioactive waste stream is provided by adding sodium hydroxide (NaOH) and/or potassium hydroxide (KOH) together with a rapidly dissolving form of silica, e.g., fumed silica or fly ash. Alternatively, the fumed silica can be first dissolved in a NaOH/KOH solution, which is then combined with the waste solution. Adding a binder that can be a mixture of metakaolin (Al2O3.2SiO2), ground blast furnace slag, fly ash, or other additives. Adding an “enhancer” that can be composed of a group of additives that are used to further enhance the immobilization of heavy metals and key radionuclides such as 99Tc and 129I. An additional step can involve simple mixing of the binder with the activator and enhancer, which can occur in the final waste form container, or in a mixing vessel prior to pumping into the final waste form container, depending on the particular application.
Abstract:
A cement curing formulation and curing method for high-level radioactive boron waste resins from a nuclear reactor. The curing formulation comprises the following raw materials: cement, lime, water, curing aids and additives. The curing method comprises: (1) weighing the raw materials and the high-level radioactive boron waste resins, and adding lime into a curing container; (2) then adding the high-level radioactive boron waste resins; (3) feeding other raw materials under stirring; (4) adding the cement and supplementing water depending on the moisture state of the cement, and stirring until uniform; and (5) standing and maintaining after stirring until uniform. The curing formulation has the features of a high curing containment rate, high strength of the cured body, better water resistance, better freeze-thaw resistance, and low radioactive leakage.
Abstract:
Using crystalline silica, mixed with cement powder, to reduce the heating of the cement paste caused by the hydration of said powder, during a process of packaging of radioactive waste, a formulation for the packaging of radioactive waste by cementing, which comprises such silica, a method for packaging radioactive waste implementing this formulation, and a package for packaging of radioactive waste which is obtained by this method.
Abstract:
Masses for obtaining poured concrete, concrete for bricks, concrete for tiles or mortar are known, in which Portland cement and Colemanite, water and additives to regulate the process are involved as aggregate.The invention achieves a remarkable increase in the capacity of neutron radiation protection of the material. For this, Portland cement is replaced by Alumina cement and a new component is inserted into the mass, specifically anhydrous calcium sulfate, the Colemanite staying as aggregate.
Abstract:
Treatment of a radioactive waste stream is provided by adding sodium hydroxide (NaOH) and/or potassium hydroxide (KOH) together with a rapidly dissolving form of silica, e.g., fumed silica or fly ash. Alternatively, the fumed silica can be first dissolved in a NaOH/KOH solution, which is then combined with the waste solution. Adding a binder that can be a mixture of metakaolin (Al2O3.2SiO2), ground blast furnace slag, fly ash, or other additives. Adding an “enhancer” that can be composed of a group of additives that are used to further enhance the immobilization of heavy metals and key radionuclides such as 99Tc and 129I. An additional step can involve simple mixing of the binder with the activator and enhancer, which can occur in the final waste form container, or in a mixing vessel prior to pumping into the final waste form container, depending on the particular application.
Abstract:
A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100° C.-200° C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.
Abstract:
The invention provides a method for the encapsulation of fine particulate materials which comprises treating these materials with a microfine hydraulic inorganic filler which, typically, comprises a cementitious material, such as Portland Cement. The filler is ground to a much smaller particle size than is normally used in the production of a grout and is provided in the form of an aqueous composition for the treatment of the fine particulate materials by pumping under pressure through these materials such that they become intimately encapsulated. The method is particularly applicable to the treatment of waste materials and, most particularly, waste materials which are encountered in the nuclear industry.