Abstract:
One embodiment of the present subject matter includes a method of receiving an input signal. The method, in various embodiments, includes detecting a peak of the input signal and detecting an envelope of the input signal. In various embodiments, the peak and envelope are used to identify out-of-band blocking signals and to adjust gain control. The method also includes comparing the peak to a first threshold Tp and comparing the envelope to a second threshold Te. In the method, if the peak is above the first threshold and the envelope is below the second threshold, then ignoring the input signal. If the envelope is above the second threshold, the method includes applying automatic gain control to decode information encoded in the input signal.
Abstract:
A radio-frequency receiver includes an RF amplification circuit which amplifies a received RF signal and generates an amplified RF signal, a mixing circuit which converts the amplified RF signal into an intermediate-frequency signal, an IF amplification circuit which generates an amplified IF signal, a first level detection circuit which detects a level of the amplified RF signal, a second level detection circuit which detects a level of the IF signal, a third level detection circuit which detects a level of the amplified IF signal, a RF reference level generation circuit which generates an RF reference level based on one of respective detection signal levels of the first and second level detection circuits, and an RF gain control circuits which controls an amplification gain of the RF amplification circuit so that a detection signal level of the third level detection circuit becomes equal to the RF reference level.
Abstract:
In a high frequency power amplifier circuit that supplies a bias to an amplifying FET by a current mirror method, scattering of a threshold voltage Vth due to the scattering of the channel impurity concentration of the FET, and a shift of a bias point caused by the scattering of the threshold voltage Vth and a channel length modulation coefficient λ due to a short channel effect are corrected automatically. The scattering of a high frequency power amplifying characteristic can be reduced as a result.
Abstract:
A radio-frequency receiver includes an RF amplification circuit which amplifies a received RF signal and generates an amplified RF signal, a mixing circuit which converts the amplified RF signal into an intermediate-frequency signal, an IF amplification circuit which generates an amplified IF signal, a first level detection circuit which detects a level of the amplified RF signal, a second level detection circuit which detects a level of the IF signal, a third level detection circuit which detects a level of the amplified IF signal, a RF reference level generation circuit which generates an RF reference level based on one of respective detection signal levels of the first and second level detection circuits, and an RF gain control circuits which controls an amplification gain of the RF amplification circuit so that a detection signal level of the third level detection circuit becomes equal to the RF reference level.
Abstract:
In a high frequency power amplifier circuit that supplies a bias to an amplifying FET by a current mirror method, scattering of a threshold voltage Vth due to the scattering of the channel impurity concentration of the FET, and a shift of a bias point caused by the scattering of the threshold voltage Vth and a channel length modulation coefficient λ due to a short channel effect are corrected automatically. The scattering of a high frequency power amplifying characteristic can be reduced as a result.
Abstract:
A transmitting method and a transmitter apparatus, which need no manual adjustment, are disclosed. A delay amount of a delay means is automatically adjusted such that an out-of-band distortion component of a transmission signal is minimized, and a correct timing is produced by the method and the apparatus. In this transmitter apparatus, a first delay means adjusts a control timing over a voltage that controls a power amplifying means, and a distributor distributes an output from the power amplifying means in order to feedback parts of the output. A distortion adjusting means calculates a distortion component of the transmission signal by using the signal fed back by the distributor, and adjusts automatically a delay amount of the first delay means so as to minimize the distortion component. This structure allows eliminating manual adjustment, and obtaining high power-efficiency with fewer distortions.
Abstract:
Examples disclosed herein relate to a high gain active relay antenna system. The active relay antenna system comprises a first antenna pair having a first receive antenna and a first transmit antenna to communicate wireless signals in a forward link from a base station to a plurality of users; and a second antenna pair having a second receive antenna and a second transmit antenna to communicate wireless signals in a return link from the plurality of users to the base station. The active relay antenna system further comprises a first active relay section and a second active relay section to provide for adjustable power gain in the wireless signals.
Abstract:
Methods and systems are provided for gain control in circuits. Gain applied in a circuit may be set to a baseline set gain. A first baseline parameter, associated with a first feature of a particular pattern of a signal at said baseline set gain, and a second baseline parameter, associated with a second feature of said particular pattern of the signal at said baseline set gain, may be determined. The gain is then set a current set gain, and a gain compression ratio may be determined based on one or more of said first baseline parameter, said second baseline parameter, a first current parameter associated with said first feature of at said current set gain, and a second current parameter associated with said second feature at said current set gain. Said current set gain may then be adjusted until said gain compression ratio reaches a predefined limit.
Abstract:
Various embodiments are directed to systems and techniques for reducing power consumption in a mobile computing device. In one or more embodiments, a mobile computing device may be arranged to determine a user environment based on detected antenna impedance or detected current. After the user environment is determined, the mobile computing device may confirm that total radiation power (TRP) for the mobile computing device at an initial conducted power level exceeds the minimum TRP threshold required by the network carrier to receive acceptable quality of service (QoS). Based on the excess TRP for the particular user environment, the mobile computing device may determine a reduced conducted power level to be input to an antenna system. Accordingly, significant power savings may be achieved. To save additional power, the mobile computing device may automatically adjust and/or improve antenna impedance matching based on user environment allowing a further reduction in conducted power.
Abstract:
One embodiment of the present subject matter includes a method of receiving an input signal. The method, in various embodiments, includes detecting a peak of the input signal and detecting an envelope of the input signal. In various embodiments, the peak and envelope are used to identify out-of-band blocking signals and to adjust gain control. The method also includes comparing the peak to a first threshold Tp and comparing the envelope to a second threshold Te. In the method, if the peak is above the first threshold and the envelope is below the second threshold, then ignoring the input signal. If the envelope is above the second threshold, the method includes applying automatic gain control to decode information encoded in the input signal.