Abstract:
A resonator device includes: a base; a resonator element that includes a resonator substrate and an electrode; a conductive layer that is disposed on the base; a metal bump that is disposed between the conductive layer and the resonator element, and that electrically couples the conductive layer and the electrode while bonding the conductive layer and the resonator element; and at least one of a first low elastic modulus layer that is interposed between the base and the conductive layer, that overlaps the metal bump in a plan view of the base, and that has an elastic modulus smaller than that of the metal bump, and a second low elastic modulus layer that is interposed between the resonator substrate and the electrode, that overlaps the metal bump in the plan view of the base, and that has an elastic modulus smaller than that of the metal bump.
Abstract:
A semiconductor device including a first functional module arranged on a first substrate and having a chip, an electrical connection component and a sealing ring, where the sealing ring surrounds the chip, and the chip is electrically connected to the electrical connection component; a second functional module having a packaging substrate, where the packaging substrate includes at least two metal layers and a dielectrical layer between the metal layers; a third functional module having multiple redistribution lines and multiple micro through holes for electrical connection between the first functional module and the second functional module, where the electrical connection component in the first functional module is electrically connected to the third functional module; and a second substrate, where the second substrate is sealed with the first substrate.
Abstract:
The present disclosure provides a single crystal film bulk acoustic resonator, a manufacturing method for a single crystal film bulk acoustic resonator, and a filter, and relates to the technical field of filters. The method includes: sequentially forming a buffer layer, a piezoelectric layer, and a first electrode that are stacked on a temporary base substrate; forming a first bonding layer on the first electrode; providing a substrate; etching the substrate to form a plurality of first bumps on a surface of the substrate; forming a second bonding layer covering top surfaces of the plurality of first bumps on the surface of the substrate; and bonding the second bonding layer located at the top surfaces of the plurality of first bumps to the first bonding layer. During bonding, the area of the top surfaces of the first bumps can be controlled by etched grooves, so the area of the second bonding layer located at the top surfaces of the first bumps can be controlled, thereby realizing the control of a bonding area. By controlling the bonding area, the balance between the bonding requirement and the bonding reliability is realized.
Abstract:
There are provided an acoustic resonator and a method of manufacturing the same. The acoustic resonator includes a resonance part including a first electrode, a second electrode, and a piezoelectric layer disposed between the first and second electrodes. The acoustic resonator also includes a substrate disposed below the resonance part and including a via hole penetrating through the substrate and a connection conductor disposed in the via hole and connected to at least one of the first and second electrodes.
Abstract:
An electronic device includes: a first substrate, a first function part in its first surface, an adhesive layer on the first surface so as to surround the first function part, a second substrate bonded to the first substrate by the adhesive layer to form a gap between the first and second substrates, a first via interconnection piercing the first substrate to connect the first surface and an opposite second surface, a second via interconnection piercing the second substrate to connect a third surface of the second substrate opposite to the first substrate and a fourth surface opposite to the third surface, a first terminal provided on the second surface and connected to the first via interconnection, a second terminal provided on the fourth surface and connected to the second via interconnection. The first function part is connected to at least one of the first and second via interconnections.
Abstract:
A piezoelectric device includes a crystal element, excitation electrodes, extraction electrodes, a base, and first and second wiring electrodes on the base and connected to the extraction electrodes. The crystal element is connectedly secured to the first wiring electrode with conductive adhesive at an end part at a side of the one side on one surface of the crystal element. The fixing and the wire bonding are performed such that a secured position with the conductive adhesive overlaps a bonding position on the crystal element side by the wire bonding in a crystal element thickness direction. The first wiring electrode is disposed at an end part at a side of one side of the base and has a planar shape and a size so as to planarly encompass at least a region formed by projecting a part where the conductive adhesive contacts the crystal element to the base side.
Abstract:
An acoustic wave device includes: an acoustic wave chip including an acoustic wave element formed therein; a multilayered substrate including the acoustic wave chip mounted on an upper surface thereof; a first ground terminal formed on a lower surface of the multilayered substrate and electrically coupled to a ground electrode of the acoustic wave chip; a second ground terminal formed on the lower surface; a signal terminal formed on the lower surface and electrically coupled to a signal electrode of the acoustic wave chip; and a shield layer formed at least on the upper surface, on the lower surface, or between the lower surface and the upper surface of the multilayered substrate so as to overlap with at least a part of the acoustic wave chip, not electrically coupled to the first ground terminal in the multilayered substrate, and electrically coupled to the second ground terminal.
Abstract:
An electronic device includes: a first substrate, a first function part in its first surface, an adhesive layer on the first surface so as to surround the first function part, a second substrate bonded to the first substrate by the adhesive layer to form a gap between the first and second substrates, a first via interconnection piercing the first substrate to connect the first surface and an opposite second surface, a second via interconnection piercing the second substrate to connect a third surface of the second substrate opposite to the first substrate and a fourth surface opposite to the third surface, a first terminal provided on the second surface and connected to the first via interconnection, a second terminal provided on the fourth surface and connected to the second via interconnection. The first function part is connected to at least one of the first and second via interconnections.
Abstract:
An acoustic wave device includes: a substrate; a pad formed on the substrate; a cap formed of an inorganic insulating material and located on the substrate, the cap including a cavity located in a surface of the cap at a substrate side and a penetration hole formed in a location overlapping with the pad; a terminal filling the penetration hole, coupled to the pad on the substrate, and formed of solder; and a functional element formed on an upper surface of the substrate and in the cavity, the functional element exciting an acoustic wave.
Abstract:
A piezoelectric vibrator is provided in which a piezoelectric vibrating piece is accommodated in a package, the piezoelectric vibrating piece including: a pair of vibrating arm sections; a base section to which each base end of the pair of vibrating arm sections is connected; and a support arm section that is connected to the base section between the pair of vibrating arm sections and extends from the base section to the same side as the vibrating arm sections, in which the piezoelectric vibrating piece is supported within the package in mount sections provided in the support arm section, and in which the mount sections are provided in a region which is defined between a position of which a distance from an end section of the base section opposite to the side where the support arm section is connected to the side of a leading end of the support arm section is 25% of a width dimension of the base section along the width direction and a position of which the distance is 65% of the width dimension.