Abstract:
A bipolar pulse generator includes two, two-conductor transmission lines coupled together with a load positioned between the two transmission lines. Each conductor of a transmission line we define as a segment. Two segments of one transmission line are charged and switchably coupled to two segments of the other transmission line to produce a bipolar pulse on the matched load. This bipolar pulse generator may be implemented in a flat or a folded design. The generator may include two transmission line structures coupled together with a load positioned between each transmission line structures. The first transmission line structure may include a stepped transmission line and an embedded transmission line segment. A switch may be coupled between the embedded transmission line segment and another segment of the transmission line structure. During operation, the first transmission line structure may be charged to a potential with the switch in the open position and, when the switch is closed, the charge on the first transmission line structure together with the second transmission line structure generates a bipolar pulse on the matched load.
Abstract:
A bipolar pulse generator includes two, two-conductor transmission lines coupled together with a load positioned between the two transmission lines. Each conductor of a transmission line we define as a segment. Two segments of one transmission line are charged and switchably coupled to two segments of the other transmission line to produce a bipolar pulse on the matched load. This bipolar pulse generator may be implemented in a flat or a folded design. The generator may include two transmission line structures coupled together with a load positioned between each transmission line structures. The first transmission line structure may include a stepped transmission line and an embedded transmission line segment. A switch may be coupled between the embedded transmission line segment and another segment of the transmission line structure. During operation, the first transmission line structure may be charged to a potential with the switch in the open position and, when the switch is closed, the charge on the first transmission line structure together with the second transmission line structure generates a bipolar pulse on the matched load.
Abstract:
A clock distribution network for distributing a repetitive timing signal throughout an integrated circuit, the timing signal being within a range of frequencies about a first frequency, includes multiple buffer circuits and at least one conductive segment connecting one of the buffers to another of the buffers. The conductive segment has a length selected so as to be less than a quarter-wave resonance length of the conductive segment at the first frequency to thereby achieve duty cycle correction.
Abstract:
A microwave rf envelope generator or pulse shaper has a main waveguide with two opposing branches connected in shunt to the main waveguide and are terminated with variable positionable shorts. The characteristic impedance of the shunted combination of the two branches equal one half the characteristic impedance of the main waveguide. An incident rf pulse applied to an input of the main waveguide is transmitted to a four way junction formed at the intersection of the two branches. The incident pulse is divided at the junction. Divided pulses are then transmitted down each of the branches and to an output of the main waveguide. The pulses traveling down each branch will have their phases shifted when they are reflected by the variable positionable shorts. The lengths of the branches are adjusted by the variable shorts so that the phase of the reflected and inverted pulses will cancel the trailing portion of the pulse transmitted out towards the output of the main waveguide. The output pulse width is a function of the time it takes the divided pulses to travel down the branches and back.
Abstract:
Apparatus for equalizing digital data which has been distorted in transmission. The value of the signal at each instant of time is delayed and modified by a weighting junction and added to the value of the signal input at the next instant of time in an analog adder. The output of the analog adder is applied to a series of cascaded digital correction devices, the outputs of which are each connected through weighting junctions and switches to the analog adder to control the equalization of the signal input. The equalized signal output is taken from the last of these cascaded correction devices.