Abstract:
A Data Storage Device (DSD) enclosure includes a chassis and at least one backplane mounted in the chassis. According to one aspect, each backplane includes a row of DSD slots and a switch slot located in a middle portion of the row of DSD slots. A plurality of signal traces connect the DSD slots to the switch slot.
Abstract:
A network packaging system can include a circuit board that includes a chip located substantially in a center of the board. A backplane is in communication with the chip and located along on a first edge of the circuit board. A plurality of connector ports are arranged along the perimeter of at least two other edges of the circuit board. A plurality of traces connects the plurality of connector ports to the chip. A support structure houses one or more circuit boards, with at least two sidewall surfaces of the support structure extending substantially orthogonal to and coextensive with each of the at least two edges of the circuit board. The support structure includes a plurality of apertures extending through the one or more surfaces spatially aligned with each of the plurality of connector ports.
Abstract:
Embodiments enable for the creation of microelectronic modules that may be configured in any order within a microelectronic assembly. The microelectronic modules provide for point-to-point interconnects between the modules using a standardized connector that is the same for each module. This, thereby, eliminates the need for a backplane. The modules may be configured in any order within a microelectronic assembly. No prior knowledge regarding the functions of an individual microelectronic module is required if the microelectronic modules conform to the standardized I/O of the standardized connector.
Abstract:
A memory module includes a substrate, a plurality of signal lines, a clock line and a plurality of memory devices. The plurality of signal lines including first and second signal lines routed alongside one another where, for each of the first and second signal lines, a respective signal, starting at a corresponding first edge finger, traverses in sequence, a respective first segment of a respective signal line, a respective turn portion of the respective signal line, and a respective second segment of the respective signal line. The clock line is to provide a clock signal that traverses in sequence, a second edge finger, the first segment of the clock line, the turn portion of the clock line, and the second segment of the clock line. The respective signals traverse and the clock signal line arrive at the plurality of memory devices in sequence.
Abstract:
A memory module includes a first signal line to carry a first signal. The first signal line has (i) a first line segment disposed along a length of the memory module and coupled to a termination, and (ii) a second line segment disposed along a width of the memory module and coupled to an edge finger. The first line segment and the second line segment are coupled together at a turn. A first synchronous memory device and a second synchronous memory device are coupled to the first line segment. The first signal arrives at the first synchronous memory device and the second synchronous memory device in a sequential manner. The memory module includes a clock line routed alongside the first signal line. A clock signal arrives at the first synchronous memory device and the second synchronous memory device in sequence alongside the first signal traversing along the first signal line.
Abstract:
A modular power distribution system comprises a chassis; and a backplane including a power input, and a plurality of module connection locations. A plurality of modules are mounted in the chassis, each module mounted to one of the module connection locations. Each module includes: (i) an OR-ing diode; (ii) a circuit protection device; (iii) a microprocessor controlling the circuit protection device; and (iv) a power output connection location. A circuit option switch is located on each module for setting the current limits for each module. A control module is provided connected to the backplane.
Abstract:
A backplane arrangement 200; 500 and method for distributing network connections in said backplane arrangement 200; 500 comprising a number of board positions Ac-Fc; Gc-Kc each arranged to operatively receive a board Ab-Fb; Gb-Kb, and a backplane-network arrangement 250, 300; 550, 600, 600′ arranged to operatively make a plurality of network connections a-n; a-g available at a first board position Ac; Gc. The backplane arrangement 200; 500 is characterized in f/?af a first allocation arrangement Aen1-Aen14; Gen8-Gen14 is arranged to operatively allocate a set of the available network connections a-n; a-g to be used by a board Ab received in the first board position Ac; Gc; and a first bypass arrangement Ap; Aps; Aps'; Gp is arranged to operatively bypass a set of the available network connections b-n; b-g unallocated at the first board position Ac; Gc to a second subsequent board position Bc; Hc via the backplane-network arrangement 250; 550.
Abstract:
Each chassis includes a back plane having a plurality of slots and a CPU blade server and CMMs which are inserted in the slots, respectively. The back plane has a storage unit storing a housing number for identifying the housing, in-housing chassis numbers for identifying the chassis in the housing, and in-chassis slot IDs for identifying the slots. When the blade server is inserted into the corresponding slot, the blade server acquires the in-chassis slot ID from the back plane. When the CMMs are inserted into the corresponding slots, the CMMs acquire housing numbers and in-housing chassis numbers from the back plane, holds the housing number and the in-housing chassis numbers, and manages the configuration of the blade server through the back plane. One of the CMMs manages the other CMMs.
Abstract:
The present invention comprises a method and apparatus for providing a common support services infrastructure that allows a network element shelf to be used with circuit card configurations that provide enhanced and/or new data path functionality without requiring the expensive and time consuming redesign of the entire shelf unit. In one embodiment, the invention provides support services including common control and housekeeping services to a subshelf bay into which one or more subshelves may be installed. In one embodiment, the common support services that are provided include power supply services, environmental control services, information display services, and operational control and management services. In one embodiment, the subshelf bay is provided with standardized means used to supply the common support services to the subshelves. In one embodiment, each sub-shelf contains its own midplane and is operationally independent from other subshelves. The use of subshelves and the separation of providing support services (provided by the infrastructure) from providing data path functionality (provided by the subshelves) allows data path functionality to be enhanced by replacement of a subshelf without requiring redesign of the entire shelf unit.
Abstract:
A modular power distribution system comprises a chassis; and a backplane including a power input, and a plurality of module connection locations. A plurality of modules are mounted in the chassis, each module mounted to one of the module connection locations. Each module includes: (i) an OR-ing diode; (ii) a circuit protection device; (iii) a microprocessor controlling the circuit protection device; and (iv) a power output connection location. A circuit option switch is located on each module for setting the current limits for each module. A control module is provided connected to the backplane.