Abstract:
Low strength wastewater such as municipal sewage is treated using an anaerobic digester. In some examples, a wastewater stream is separated into a solids rich portion and a solids lean portion. The solids lean portion is treated, for example to remove nitrogen. The solids rich portion is treated in an anaerobic digester, preferably with influent or recuperative thickening. In another example, the wastewater stream is fed to an anaerobic digester and solid-liquid separation stages downstream of the digester return active bacteria and undigested organics to the digester. Both cases may use a process train comprising treatment in an anoxic tank followed by a nitritation tank with a portion of the effluent from the nitritation tank recirculated to the anoxic tank to provide nitritation and denitritation.
Abstract:
Methods and systems are provided for treating wastewater to simultaneously remove nitrogen, carbon, and phosphorus, while recovering energy in the form of methane and carbon dioxide. An ammonia-containing stream is directed to a pretreatment tank that produces excess sludge, biogas, and a pretreated stream. The pretreated stream has at least 45% less carbon than the ammonia-containing stream. The pretreated stream is then directed to an anoxic tank, which promotes phosphorus release and fermentation of particulate and dissolved organic matter. The mixed liquor is transferred to an aerated tank having low dissolved oxygen concentrations to promote development of phosphorus-release bacteria that is eventually recycled to the anoxic tank by way of the return activated sludge. Simultaneous nitrification, denitrification, and phosphorus release occur in the aerated tank. A membrane tank separates treated effluent from activated sludge in a membrane tank.
Abstract:
A new approach is proposed that contemplates systems and methods to support an environmentally-friendly, “green” thermophilic anaerobic digestion system. The system includes a thermophilic anaerobic digester as well as various independent modular anaerobic units to generate bio-methane from certain organic energy sources, including but not limited to, among other things, green municipal waste, restaurant and organic waste and effluents from industries such as breweries, grocery stores, food processing plants, granaries, wineries, pulp and paper mills, ethanol and biodiesel plants, fat and animal rendering, agricultural field crops, organic sludge accumulation within lagoons and waterways, marine organic matter and animal manure.
Abstract:
The present invention relates to a method for taking liquid anaerobic digestion effluent and increasing the solids content by using the effluent and biomass to further digest both.
Abstract:
Low strength wastewater such as municipal sewage is treated using an anaerobic digester. In some examples, a wastewater stream is separated into a solids rich portion and a solids lean portion. The solids lean portion is treated, for example to remove nitrogen. The solids rich portion is treated in an anaerobic digester, preferably with influent or recuperative thickening. In another example, the wastewater stream is fed to an anaerobic digester and solid-liquid separation stages downstream of the digester return active bacteria and undigested organics to the digester. Both cases may use a process train comprising treatment in an anoxic tank followed by a nitritation tank with a portion of the effluent from the nitritation tank recirculated to the anoxic tank to provide nitritation and denitritation.
Abstract:
The invention relates to a method for treating organic waste, in particular to a method for treating sludge from wastewater treatment plants, in order to produce power and/or hygienised organic matter, including a first step of mesophilic or thermophilic digestion (13) of at least one fraction of a stream of organic waste, and comprising the following steps: dehydrating (15) all of the digested and non-digested waste; aerated thermal hydrolysis (16) of the dehydrated waste, including an injection of an oxidising agent in a quantity lower than the stoichiometric quantity for oxidising organic matter, and setting to the required temperature by a heating means; and a second mesophilic or thermophilic digestion (17) of the stream of hydrolysed waste.
Abstract:
A method for removing methane from biogas is described. The method includes: (i) receiving biogas including methane and other components into a first tank; (ii) receiving water into the first tank; (iii) contacting the biogas with the water inside the first tank; (iv) dispensing methane gas from an outlet of the first tank; and (v) producing from the tank an effluent stream that includes other components of the biogas.
Abstract:
A bioreactor for anaerobic, aerobic and anoxic digestion of organic matter from wastewater, having a bottom anaerobic zone where the wastewater is fed where anaerobic bacteria produces biogas and the sludge produced is deposited on the bottom and subsequently extracted. An anoxic middle zone contains denitrifying bacteria which converts nitrates to nitrogen, and an aerobic zone at the upper part where at least one biological contact rotor is disposed, which degrade organic matter remaining in the water. The growth of nitrifying bacteria converts ammonia nitrogen into nitrites and nitrates. The tank has a plurality of rhomboids for biogas, sludge and scum collection that join together form a intermediate polyhedral separator panel. The rhomboids joined together define conical collectors with connecting nozzles of ducts from a capture and conduction network of biogas and funnel-shaped manifolds with connecting nozzles of ducts that define a capture and conduction network of sludge and scum.
Abstract:
Methods and systems for the growth of heterotrophic eukaryotic biomass that use pH modulations in order to treat wastewater and produce biomass in optimized quantities.
Abstract:
A hybrid method and system of treating wastewater with reduced energy usage is disclosed. The treatment system has a sorption system, an anaerobic digester that digests or converts at least a portion of the solids or sludge from the sorption system, and an aerobic treatment tank that partially reduces oxygen demand of a portion of the sludge from the sorption tank.