Abstract:
The invention concerns a method of machining a workpiece, wherein an end-facing tooth edge of a gear profile of the workpiece that was generated by a chip-removing machining process is reworked at a first location into a chamfered edge by way of a plastic forming operation. The material which in the plastic forming operation was displaced towards the end surface of the gear profile is pushed outward as a material protrusion in the end surface of the tooth, while the material displaced towards the flank of the tooth is pushed outward as a material protrusion on the flank side of the chamfer, and the resulting material protrusions in the end surface and on the flank side are removed. The workpiece, while still carrying the material protrusion on the end surface of the gear profile, is transferred to a second location where the protrusion on the flank side of the chamfer is removed.
Abstract:
An arrangement for controlling the process of rotary chip removing machining of a work piece includes a monitoring system for monitoring the rotary chip removing machining. The monitoring system has at least one surface acoustic wave sensor and at least one first antenna mounted to a cutting tool. At least one second antenna is arranged for wireless communication with the second antenna. Each sensor detects at least one parameter of a group of parameters consisting of strain, temperature and pressure. The sensor and the first antenna transmit the detected at least one parameter to the second antenna in response to an interrogation signal received by the first antenna. A processing unit is connected to the second antenna and transmits the interrogation signal and transmission energy to the first antenna and to the sensor via the second antenna. A control system communicates with the monitoring system to control the machining of the work piece at least partially based on the detected parameter. A cutting tool is provided with the at least one sensor and the at least one first antenna.
Abstract:
To produce toothed sections on workpieces, a machine tool has a machine bed, a pivoting element with at least two workpiece spindles arranged thereon and a tool positioning unit with a tool head. The spindles can be pivoted relative to the machine bed about a workpiece spindle pivot axis and each spindle has a workpiece receiver that can be rotatably driven about a rotational axis. The tool head can be linearly moved in three directions relative to the spindles, and can be pivoted about a tool head pivot axis. A bearing element extending in the direction of the workpiece spindle pivot axis, has a free end which is pivotable about the workpiece spindle pivot axis, and is rigidly arranged on the pivoting element. A reinforcing element is fastened to the machine bed. The pivoting element is reinforced about the workpiece spindle pivot axis by the reinforcing element.
Abstract:
An apparatus for machining a workpiece with a tool has a columnar housing having an upright front face and a pair of upright and parallel side walls extending horizontally rearward from the front face, a carriage movable at least vertically on the front face carries a first holder for the workpiece or the tool. A U-shaped frame juxtaposed with the housing front face has two rigid arms each extending rearward adjacent the housing side walls with interfitting guides between each of the arms and the respective side wall enabling horizontal movement of the frame toward and away from the front face. A second holder on the frame and in front of the front wall holds the tool or the workpiece and is engageable with the workpiece or the tool, respectively, in the first holder.
Abstract:
Machine (10) with an NC control unit (11) and at least one motor (12) which can be triggered by said control unit (11) and which forms an oscillatory system with its bearing and/or parts of the machine (10). The control unit (10) injects control variables (S1) into the motor (12) which trigger a desired motion of the motor (12). When necessary, the control unit (11) additionally injects predetermined signal variables (S2) into the motor (12) which trigger desired mechanical oscillations of the oscillatory system. The signal variables (S2) are predetermined in such a way that the mechanical oscillations are audible and/or tangible.
Abstract:
A mechanical gear hob is equipped with an automatic stock divide device that enables the hob to cut or re-cut gear parts that already have teeth in them by automatically synchronizing the gear teeth to the hob cutter. The hob is equipped with a hob shift position sensor and a hob cutter rotary position sensor to input to a controller the lateral and rotary positions of the hob cutter. A stock divide sensor is mounted adjacent the worktable to determine the location of the gear teeth previously formed in the workpiece. A servomotor is mounted to the differential input shaft in the hob drive train and has a rotary position feedback to the controller as well. Stock divide is accomplished by an input to the differential, causing the workpiece to rotate relative to the hob cutter to bring the existing teeth on the workpiece into phase with the teeth of the hob cutter.
Abstract:
Machine tool for machining of a rotating workpiece, comprising a tool drive, a workpiece drive for rotatably driving the workpiece, a tool rotationally driven by the tool drive in synchronization with the workpiece for producing a toothing on the workpiece, rotation transmitters for determining rotational condition of the tool and the workpiece, respectively, an electronic control for keeping the workpiece drive and the tool drive in synchronization by respectively associated ones of the rotation transmitters. A positioning motor is associated with one of the two drives for influencing the position of the phases of the two drives, and a sensor element provided in association with one of the two rotation transmitters is rotatably adjustable with respect to a stator of a corresponding one of the drives.
Abstract:
In a composite-machining machine tool for carrying out a turning operation and a machining center operation, a B-axis shaft 13, having a tool spindle head 14 mounted on its front end, is rotatably supported by a Y-axis slide 10, and the B-axis shaft 13 can be indexingly rotated by a B-axis servomotor 22. Clamp pistons 26 are provided in opposed relation to a flange portion 25 of a front end portion 13A of the B-axis shaft, and the clamp pistons 26 are pressed against the flange portion 25 to thereby fix the B-axis shaft at an arbitrary rotational angle position. By doing so, a hobbing tool 29 can be fixed in such a manner that the axis of this hobbing tool can be precisely indexed at a desired angular position with respect to a workpiece W, thereby enabling a hobbing operation.
Abstract:
A tool for fine machining the tooth flanks of pretoothed gearwheels is described. The flanks of the gearwheel are subjected to a worm-shaped tool by the hobbing method. The tool is made of an elastic synthetic material with embedded granular grinding material. It is advantageous for the worm-shaped tool to be lined up with a conventional grinding worm on a tool spindle. The microfinish of the gearwheel, i.e. the polishing, can then take place on one and the same machine directly following the grinding.
Abstract:
A tool mounting assembly for a gear hobbing machine is disclosed as being mounted between a drive spindle and an outboard bearing support in axial alignment with said drive spindle. The tool mounting assembly comprises a first coupling unit for detachably connecting one end of a hob in driving engagement with said drive spindle, and a second coupling unit for detachably connecting the other end of said hob to said outboard bearing support. The outboard support unit includes a plunger rotatably mounted in the bearing support and axially movable between a hob coupling position and an unload position, and has a drive means for selectively moving the plunger between said hob coupling and unload positions. The second coupling unit includes a first portion secured to the other end of said hob and a second portion secured to said plunger, and includes axial nesting means for self centering the other end of the hob. The outboard support unit includes a plunger drive means for positioning said plunger at the hob coupling position with sufficient end thrust to maintain the hob concentric with the axis of the drive spindle and to hold the first and second portions of first coupling unit in rigid driving relationship.