Abstract:
A rolling mill stand has two working rolls forming a roll gap in which a rolled product transported in a conveying direction can be formed. The positioning of at least one working roll is variable in a plane perpendicular to the conveying direction. The rolling mill is used in a method which comprises: conveying the rolled product through the roll gap in the conveying direction and at the same time opening or closing the rolling mill stand by correspondingly increasing or decreasing the roll gap; during opening or closing of the roll stand, detecting a position of the rolled product in front of and/or behind the roll gap in the direction transverse to the conveying direction; and changing the positioning of the corresponding working roll depending on the detected position, so that the rolled product is stabilized at a target position during opening or closing of the roll stand.
Abstract:
A meandering control method for steel strip includes: an imaging step of imaging the surface of a traveling steel strip using a line sensor camera installed between adjacent rolling mills; a meandering amount calculation step of calculating the meandering amount of the steel strip by detecting the positions of both end portions in the width direction of the steel strip from a one-dimensional brightness distribution based on the captured image; and a leveling control arithmetic operation step of arithmetically operating a roll opening difference between the operation and drive sides of the rolling mill located on the immediately downstream side of the line sensor camera based on the calculated meandering amount. The imaging is performed in a period of 5 msec or less.
Abstract:
A control device (3b) for a roll stand (1). During rolling of a metal strip (2) in the roll stand (1), the device receives measurement data (M) for a lateral position (y) of the metal strip (2) on the inlet side and/or outlet side of the roll stand (1). Taking into account parameters (P) of the stand regulator (3a) on the basis of the deviation in the lateral position (y) from a target position (y*), a stand regulator (3a) of the control device (3b) determines a tilt value (δs) for the roll stand (1) and controls the roll stand (1) accordingly. The control device (3b) determines at least one variable (V1, V2, Q1, Q2) from which it is derived, for both strip edges (7, 8) of the metal strip (2), whether the metal strip (2) forms an undulation (9) in the region of the particular strip edge (7, 8). As soon as the metal strip (2) forms an undulation (9) in the region of one of the strip edges (7, 8), the control device (3b) varies at least one of the parameters (P) of the stand regulator (3a), such that the stand regulator (3a) determines the tilt value (δs), starting from the variation in the at least one parameter (P), and taking into account the changed parameter (P).
Abstract:
A Steckel mill has a reversing unit for rolling a rolled product and winding furnaces arranged on the entrance side and exit side of the reversing unit. When rolling the rolled product in a region of a head of the rolled product, a target thickness of the rolled product is ignored, while measuring a current thickness and/or a hardness of the rolled product and comparing this with a setpoint value. One the measured variable reaches or is below the setpoint value, the reversing unit is operated with a view to achieving the target thickness of the rolled product. The Steckel mill is operated to allow for rolling of a cold, non-rollable piece of the rolled product, so that malfunctions are avoided and the usable part of the rolled product is as large as possible.
Abstract:
There is provided a meandering control device for a rolling line capable of setting temperature of a material to be rolled so as to suppress meandering of the material to be rolled. The meandering control includes a tail end roll force calculation unit that calculates a predictive value of roll force when entry side tension is not applied, an allowable meandering amount roll force calculation unit that calculates a reference value of the roll force applied to the material to be rolled when a meandering amount of the material to be rolled is an allowable amount, and a temperature rise amount calculation unit that calculates a temperature rise amount of the material to be rolled, based on a difference between the predictive value of the roll force and the reference value of the roll force.
Abstract:
Provided is a camber control apparatus and method capable of reducing camber of a slab sizing press (SSP). The camber control apparatus and method may calculates a camber amount through an imaging process and differently set zeroing of anvils at a work side and a drive side, thereby reducing camber. Thus, the camber control apparatus and method can reduce quality defects such as telescope, twist, wave, and roll mark, increase the lifetime of equipment by reducing a variation in load applied to the equipment, and minimize a cost caused by an equipment accident.
Abstract:
A strip is fed a rolling stand of a multi-stand rolling mill with a known inlet thickness and exits with a strip thickness. Measurement parameters are determined that are characteristic of the inlet-side and outlet-side strip velocities. With the measurement parameters, the inlet-side and outlet-side strip velocities are determined with respect to the rolling stand. With the inlet thickness, the inlet-side and outlet-side strip velocities, the strip thickness is determined with respect to the rolling stand. Taking into account the determined strip thickness, further measures are taken. The measurement parameter for the inlet-side velocity is the roller peripheral velocity directly prior to the rolling stand. Alternatively or in addition, the measurement parameter for the outlet-side velocity is the roller peripheral velocity. The peripheral precession of the strip is modeled. The respective strip velocity is determined using the respective roller peripheral velocity and the peripheral strip precession in the respective rolling stand.
Abstract:
The invention relates to a method and to a device for producing a rolled metal strip from a molten metal by producing a cast metal strip in a strip casting device and then rolling the undivided metal strip in a roll stand to the final thickness of the strip. For controlling the course of the strip, strip guiding devices are provided upstream of the roll stand. In order to provide a stable insertion of the metal strip into the roll stand at the input side of the roll stand or at the site of rolling in accordance with the strip dimensions, the strip guidance interferes or is carried out at a distance of 1.0 to 10.0 times the strip width, preferably at a distance of 1.5 to 5.0 times the strip width, upstream of the roll stand.
Abstract:
The invention relates to a method and to a device for producing a rolled metal strip from a molten metal by producing a cast metal strip in a strip casting device and then rolling the undivided metal strip in a roll stand to the final thickness of the strip. For controlling the course of the strip, strip guiding devices are provided upstream of the roll stand. In order to provide a stable insertion of the metal strip into the roll stand at the input side of the roll stand or at the site of rolling in accordance with the strip dimensions, the strip guidance interferes or is carried out at a distance of 1.0 to 10.0 times the strip width, preferably at a distance of 1.5 to 5.0 times the strip width, upstream of the roll stand.
Abstract:
A roll pass of a roll set having three rolls for a multi-stand mandrel-free stretch reducing mill has a roll pass shape that deviates from the circular. A tube is passed in its longitudinal direction through the non-circular roll pass shape enabling modification of a shape of a cross-section of the tube, so as to counteract the non-circular external diameter deviations of the tube. A final roll pass (finishing pass) of the stretch reducing mill is locally enlarged at peripheral points where the tube diameter of the entering tube would otherwise deviate downward from a target size and locally reduced in size at the peripheral points where the tube diameter would otherwise deviate upward from the target size.