Abstract:
A slurry feeding apparatus includes closed slurry bottle, piping, wet nitrogen generator, wet nitrogen supply pipe, suction and spray nozzles, temperature regulator, flow rate control valves, slurry delivery pump and controller for controlling the operation and flow rate of the slurry delivery pump. While a wafer is being polished by a CMP polisher, the controller continuously operates the pump. On the other hand, while the polisher is idling, the controller starts and stops the pump intermittently at regular intervals. No stirrer like a propeller is inserted into the slurry bottle, but the slurry is stirred up by spraying the slurry through the spray nozzle.
Abstract:
The invention provides a chemical-mechanical polishing system comprising an abrasive, a carrier, and either boric acid, or a conjugate base thereof, wherein the boric acid and conjugate base are not present together in the polishing system in a sufficient amount to act as a pH buffer, or a water-soluble boron-containing compound, or salt thereof, that is not boric acid, and a method of polishing a substrate using the chemical-mechanical polishing system.
Abstract:
A metal jet cutting system, which includes a jetting heat, a heater and a power source, is used for modifying a workpiece. The jetting head includes a crucible and an inlet for receiving a feed stock of a conductive material. The heater melts the conductive material in the crucible to provide a conductive fluid, which exits the jetting head via an outlet. The power source, which is in electrical communication with the conductive fluid, increases the temperature of the conductive fluid. The conductive fluid is applied to the workpiece to modify the workpiece.
Abstract:
A method for cleaning residue of alignment marks on a CMP polished wafer. The method includes application of a strong acid or oxygen plasma to the wafer to remove the residue.
Abstract:
Embodiments of the invention abrade the information bearing surface of a compact disc (CD), DVD or other digital information bearing disk, in order to render it unreadable by standard consumer grade disk readers. This is accomplished via embodiments of the invention that are extremely lightweight, highly portable and inexpensive. Embodiments may or may not employ an outer case in order to retain the remnants of the abraded information layer of the disk. In order to operate one embodiment of the invention, the apparatus is opened and a compact disc is inserted with the face of the disk against the abrasive mechanism. After closing the apparatus, the outer housing of the apparatus is rotated with sufficient pressure against the abrasive mechanism in order to cause the substrate to be damaged sufficiently to render it unreadable by consumer based disk readers. The apparatus can be opened over a trash bin in order to empty both the disk and the particulate matter generated by the abrasive process. The apparatus may be rotated by hand or by motor in various embodiments. A case-less embodiment of the invention exists that comprises the abrasive mechanism and a post that fits into the center hole of the disk. Since there is no outer case coupled to the apparatus in this embodiment, the embodiment may be held over a trash bin while abrading the disk in order to dispose of the particulate matter resulting from the abrading process. In order to operate this embodiment, a disk is inserted into the opening between the abrader and post supporter and the post engages the hole in the center of the disk. The disk is then rotated in order to abrade the information bearing portion of the disk. When the disk has been abraded to the satisfaction of the user, the disk is disengaged from the post and the disk is removed and disposed of.
Abstract:
The present invention describes an apparatus that includes a polish pad, the polish pad including a first through-opening; a vertical distribution layer located below the polish pad, the vertical distribution layer connected to the through-opening; a lateral distribution layer located below the vertical distribution layer, the lateral distribution layer connected to the vertical distribution layer; and a slurry dispense located over a front-side of the polish pad, the slurry dispense to provide a slurry to be transported through the polish pad to the lateral distribution layer. The present invention further describes a method including dispensing a slurry at a front-side of a polish pad; flowing the slurry to a location below the polish pad; flowing the slurry upwards and outwards, towards edges of the polish pad; and distributing the slurry to an upper surface of the polish pad.
Abstract:
There is provided a method for polishing a semiconductor wafer, in which by using a specific polishing cloth as one for use in a mirror polishing step for the semiconductor wafer, especially in a final polishing stage thereof, generation of micro-scratches and blind scratches on a wafer surface is prevented. In a polishing step of mirror polishing the semiconductor wafer using a polishing cloth, the polishing is performed using the polishing cloth with a nap layer of 500 nullm or more in thickness.
Abstract:
In a wafer polishing apparatus which polishes a wafer surface or in a wafer cleaner, there are provided a transfer and cleaning chamber which shuts off a wafer from the outside air and an inert gas supply device which fills an inert gas into the transfer and cleaning chamber. Thus, there are provided a polishing apparatus, a cleaner, a cleaning method and a wafer evacuation program which can prevent the oxidation and modification of a wafer surface in each step, such as the polishing step of a wafer, the transfer step after polishing, the cleaning step after polishing, the drying step after polishing, the inspection step after polishing, and the storage step after polishing.
Abstract:
A high-pressure pad cleaning system that can be used in conjunction with semiconductor device fabrication tools that utilize pads, such as chemical-mechanical polishing (CMP) tools, is disclosed. A system includes a turntable, first and second outlets, and a dresser. A pad is placed on the turntable, where the turntable rotates in a first direction. The first outlet supplies a dressing solution, such as deionized water, onto the pad at a first pressure, substantially at a single point on the center of the pad. The second outlet supplies the solution onto the pad at a second pressure greater than the first pressure, substantially at a radial line from the center of the pad to its edge at an angle and in a direction opposite to the first direction.
Abstract:
A method for cutting thin film filter work pieces has two embodiments. In a first embodiment, an intermediate layer (13) binds an augmenting substrate (14) to a glass substrate (12) of the work piece (16) prior to cutting of the work piece. In a second embodiment, the work piece (23) comprises a glass substrate (22) which is thicker than a final desired thickness. After the work piece is cut, a surplus portion (222) of the glass substrate is removed. Both embodiments of the method increase the effective thickness of the work piece, which reduces the residual stress in the final thin film filter product, and reduces the risk of a film stack (11, 21) of the work piece peeling from the glass substrate during the cutting process.