Abstract:
The disclosure provides a tube which is rarely broken and is stable during the process of the production of a heat-shrinkable tube having tearability in a length direction. The tube includes a melt-processable fluororesin and when the strain of the tube is defined as ε, the stress at the strain is defined as σ (MPa) and the strain ε is put on the horizontal axis and the stress σ is put on the longitudinal axis on a coordinate graph, each of a straight line ab and a straight line cd which are defined by four coordinate points a (0.4,8.8), b(0.4,2.4), c(1.0,9.9) and d(1.0,3.2) on the graph intersects with a mechanical property curve of the tube which is obtained by carrying out a tensile test under the conditions of an ambient temperature of 60° C., an initial chuck-to-chuck distance of 22±0.05 mm and a tensile speed of 5 mm/sec.
Abstract:
There is provided herein a method of manufacturing a device comprising at least a first fibre using a draw apparatus, the method comprising: providing a first preform comprising a shape memory polymer to the draw apparatus; heating a first portion of the first preform; and drawing, using the draw apparatus, the heated first portion in order to form the first fibre.
Abstract:
Provided are methods and systems for manufacturing and using heat-shrink elastomeric. An example method of manufacturing a heat-shrink elastomeric element comprises providing a thermoplastic elastomeric element having a first shape; modifying the thermoplastic elastomeric element to produce a thermoset elastomeric element having the first shape; heating the thermoset elastomeric element to a temperature of at least the glass transition temperature of the thermoset elastomeric element; adjusting the first shape of the thermoset elastomeric element to produce a second shape with at least one dimension greater than that of the first shape; and cooling the thermoset elastomeric element to a temperature below that of the glass transition temperature of the thermoset elastomeric element to produce the heat-shrink elastomeric element.
Abstract:
The present invention relates to heat-shrinkable articles, including tubes, O-ring, sleeves, sealants possessing outstanding elastomeric properties, ability to elastic deformation beyond 200%, and ability to precisely and completely recover design dimensions, while possessing significantly improved mechanical properties, in particular higher tensile strength; to a method of making the same, and to a method of using the same including reverting to a shrunk state. The heat shrinkable article is made of a composition comprising at least one fluorinated thermoplastic elastomer comprising at least one elastomeric block and one thermoplastic block, iodine and/or bromine cure sites, at least one organic peroxid, and at least one polyunsaturated compound.
Abstract:
An apparatus for producing a heat recoverable plastic article such as a tube by deforming the article from a heat-stable configuration to a heat-unstable configuration. The heat-unstable configuration will return to the heat-stable configuration when the article is heated to above the heat recovery temperature. The article is heated such that the article is at a temperature no lower than the heat recovery temperature during the deforming step by lossy particles dispersed in the article or in a tool used in the deforming step. The lossy particles allow auto-regulated heating of the article since the particles cannot be heated beyond their Curie transition temperature when subjected to an alternating magnetic field. These particles are preferably ferrites. Alternatively, the tool can include a braided mesh tubing of a ferromagnetic alloy wire. The article is cooled in the heat-unstable configuration to a temperature below the heat recovery temperature while preventing the article from returning to the heat-stable configuration. The tool can be a mandrel, expandable tube or caterpillar.
Abstract:
A method of manufacture of a fiberscopic catheter having a tightly fitted optical glass fiber bundle received within an internal lumen of the catheter. The lumen for receiving the optical glass fiber bundle is heated and expanded under internal fluid pressure. The catheter and lumen are then cooled with the lumen still under the internal fluid pressure. After cooling, the fluid pressure is released and the lumen retains its expanded condition. An optical glass fiber bundle is inserted into the expanded lumen to a predetermined position within the catheter. The catheter and lumen are reheated to contract the expanded diameter of the lumen about the optical glass fiber bundle to provide a fiberscopic catheter having a tightly fitted fiber optic bundle within the catheter.
Abstract:
A pasteurizable, cook-in shrink bag is provided that comprises a first or sealing and food contact layer composed of propylene homopolymer or copolymer; a second or heat shrinkable layer composed of a blend of propylene homopolymer or copolymer and butylene homopolymer or copolymer; a third or adhesive layer composed of ethylene methacrylate copolymer; a fourth or barrier layer composed of vinylidene chloride copolymer; a fifth or adhesive layer as in said third layer; and a sixth or optical clarity layer as in said first layer; further provided that the foregoing bag structure is oriented and irradiated to a dose of about 4-12 megarads after orienting or alternatively, though less preferred, to about 6-12 megarads before orienting. Associated method for making said bag is also provided.
Abstract:
Long lengths of a heat-shrinkable sleeve for use in splicing electrical cables and the like are made in a continuous process. The sleeve is formed around a permeable core, and the core and sleeve are advanced together in an axial direction, the leading end of the advancing sleeve being hermetically sealed. The core and sleeve pass through a heating station, thereby heating a portion of at least the sleeve, and a fluid is introduced under pressure into the core, thereby internally pressurizing the sleeve to effect a radial expansion of the heated portion thereof. The core and sleeve then pass through a cooling station, thereby cooling the expanded sleeve to stabilize it. A stress graded compound also for use in splicing electrical cables and the like is made by heating a dimethyl silicone liquid to remove entrapped gas and mixing the liquid with a silicone carbide powder having a particle size capable of passing through a 400 mesh screen. The volumetric proportion of powder to 1 part liquid is within the range of 0.5 part to 2.0 parts.
Abstract:
A process for the production of a heat shrinkable article which comprises forming bonds between regions of at least two superimposed lengths of polymeric material to produce a bonded article so disposed that the desired direction of heat shrinkability lies along the length of the bonded article, cross-linking the bonded article and the bonds between the said lengths of polymeric material, heating the bonded article, stretching the bonded article longitudinally and cooling it (which may comprise allowing it to cool naturally in the stretched condition) to render the articles heat shrinkable. Pneumatic or other methods of expansion may be used in addition to the stretching to render hollow articles heat-shrinkable, the combination of stretching and another such method being advantageous in achieving high expansion ratios while maintaining a reasonable degree of symmetry in the finished hollow recoverable articles.
Abstract:
A method of producing a form retaining container made of synthetic plastic material comprising feeding a plastic material in liquid state onto a male member to provide a layer on the male member constituting a blank for the container. The layer is cooled to prevent crystallization of the material. The thus cooled blank is placed into a mold cavity having an interior configuration corresponding to the desired outer shape of the container to be produced. The layer is inflated into conformity with the mold cavity. The configuration of the mold cavity is such that the blank undergoes biaxial stretching in a middle region of the container by at least 1.5 times while the mouth and part of the bottom of the container will be formed by biaxially stretching the blank less than 1.5 times. The inflated blank is then heated until curing is completed and then the blank is removed from the mold.