Abstract:
A page width printhead assembly (1) for a digital inkjet printer has a support member that can be secured in the printer, and a printhead (2) that can be mounted to the support member. The support member has a core with at least one ink reservoir (6, 7, 8 and 9) enclosed within a laminated shell (4). The materials and structure of the shell (4) and the core (5) are selected and configured so that the co-efficient of thermal expansion of the support member as a whole is substantially equal to that of the printhead (2).
Abstract:
A printhead assembly with an elongate support member and two or more printhead modules detachably mounted in series along the support member, the support member having a structural component for strengthening the member, and a mounting component for mounting the printhead modules; wherein, the mounting component is connected to the structural component to allow relative thermal expansion. By allowing the structural component of the support to thermally expand relative to the mounting component, the structural components can be strong, inexpensive metal despite the co-efficient of thermal expansion (CTE). Only the mounting component need approximate the CTE of the printhead chips to maintain a suitable alignment of the modules.
Abstract:
Provided is an alumina sintered body including not less than 99.3% by weight of Al2O3, not more than 0.25% by weight of SiO2, not more than 0.3% by weight of MgO, and not more than 0.3% by weight of CaO, and having a surface open porosity of less than 5%, and an average open pore diameter of not more than 5 nullm. This alumina sintered body is applied to at least a surface exposed to ink in an ink jet recording head structure. This suppresses the elution of glass component of the alumina sintered body into ink, thereby stabilizing ink viscosity. This also suppresses falling of grains that causes clogging of ink discharge holes.
Abstract:
A vacuum platen assembly for a fluid-ejection device of one embodiment of the invention is disclosed that includes a platen that has a number of vacuum holes, and one or more aerosol-collection recesses. A number of ribs extend from the platen, against which position of media is maintained by suction effect from the vacuum holes.
Abstract:
An inkjet printhead lid has a light opacity component and a laser light transparent component molded together in two shots in an injection molding chamber. The laser light transparency component has a periphery that extends beyond a periphery of the light opacity component on substantially all sides thereof. An inkjet printhead body laser welds to the laser light transparency component in an area between the peripheries of the two lid components. Inkjet printers for containing the printhead are also disclosed. In the molding chamber, two sources of injection molding materials inject a first and then a second mold to mold the two lid components together. One of the two sources of injection molding materials has laser light transparency characteristics while the other has light opacity characteristics. Mechanical interlocking features may also exist in both of the two lid components.
Abstract:
A coated substrate for a center feed printhead has a substrate, a thin film applied over the substrate, and a slot region extending through the substrate and the thin film. A slot is formed through the slot region of the coated substrate. The thin film layer coating minimizes crack formation and/or a chip count in a shelf surrounding the slot through the substrate. In one embodiment, the slot is formed mechanically. In one embodiment, a plurality of thin films is used. The slot region extends through the plurality of thin films. Any combination of thin films may be applied over the substrate. In one embodiment, the thin film is at least one of a metal film, a polymer film, and a dielectric film. In another embodiment, the thin film material is ductile and/or deposited under compression. In one embodiment, the substrate is silicon, and the thin film is an insulating layer grown from the substrate, such as field oxide. In one embodiment, the thin film is PSG. In one embodiment, the thin film is a passivation layer, such as at least one of silicon nitride and silicon carbide. In one embodiment, the thin film is a cavitation barrier layer, such as tantalum.
Abstract:
A head unit is inverted so that an outflow port is in the lowest position. Because the top wall of the buffer tank slopes downwards towards the outflow port, all remaining cleaning fluid that was introduced during manufacture is removed. Also, a notch is provided in the bottom end of an ink introduction port. The notch faces towards the outflow port so that bubbles in the ink exit from the notch and are guided towards the outflow port. The head unit is shipped while the buffer tank is filled with preservation fluid that has high wettability and any openings to the outside air are closed off with covers. When the head unit is used, the preservation fluid is sucked by a purging device and then ink, which has a high affinity for the preservation fluid, is smoothly introduced. Also, the inner surface of the filters are treated to increase the wettability by ink after the filters are fixed to the bottom lid. Afterwards the bottom lid is fixed to the top lid to form the buffer tank.
Abstract:
A film is provided intended to be sandwiched between opposing faces of two objects. Each of the opposing faces have channels, passageways or openings that communicate with one or more that have channels or passageways or openings in the other face via holes in the film. The film is preferably inert and provided with adhesive on both faces.
Abstract:
A method and apparatus for delivering solvent free marking material to a receiver is provided. A printhead includes a discharge device having an inlet and an outlet with a portion of the discharge device defining a delivery path. An actuating mechanism is moveably positioned along the delivery path. A material selection device has an inlet and an outlet with the outlet of the material selection device being connected in fluid communication to the inlet of the discharge device. The inlet of the material selection device is adapted to be connected to a pressurized source of a thermodynamically stable mixture of a fluid and a marking material, wherein the fluid is in a gaseous state at a location beyond the outlet of the discharge device.
Abstract:
Disclosed is a process for depositing marking material onto a substrate which comprises (a) providing a propellant to a printhead, said printhead having defined therein at least one channel, each channel having an inner surface and an exit orifice with a width no larger than about 250 microns through which the propellant can flow, said propellant flowing through each channel, thereby forming a propellant stream having kinetic energy, each channel directing the propellant stream toward the substrate, the inner surface of each channel having thereon a conductive polymer coating; and (b) controllably introducing a particulate marking material into the propellant stream in each channel, wherein the kinetic energy of the propellant stream causes the particulate marking material to impact the substrate.