摘要:
A method for producing crystalline α-Fe2O3 nanoparticles involving ultrasonic treatment of a solution of an iron (III)-containing precursor and an extract from the seeds of a plant in the family Linaceae. The method involves preparing an aqueous extract from the seeds of a plant in the family Linacae and dropwise addition of the extract to the solution of an iron (III)-containing precursor. The method yields crystalline nanoparticles of α-Fe2O3 having a spherical morphology with a diameter of 100 nm to 300 nm, a mean surface area of 240 to 250 m2/g, and a type-II nitrogen adsorption-desorption BET isotherm with a H3hysteresis loop. A method for the photocatalytic decomposition of organic pollutants using the nanoparticles is disclosed. An antibacterial composition containing the crystalline α-Fe2O3 nanoparticles is also disclosed.
摘要:
Digestion of impure alumina with sulfuric acid dissolves all constituents except silica. The resulting sulfates—aluminum sulfate, ferric sulfate, titanyl sulfate, and magnesium sulfate for alumina contaminated with iron-, titanium-, and/or magnesium-containing species—remain in solution at approximately 90° C. Hot filtration separates silica. Solution flow over metallic iron reduces ferric sulfate to ferrous sulfate. Controlled ammonia addition promotes hydrolysis and precipitation of hydrated titania from titanyl sulfate that is removed by filtration. Addition of ammonium sulfate forms ferrous ammonium sulfate and ammonium aluminum sulfate solutions. Alum is preferentially separated by crystallization. Addition of ammonium bicarbonate to an ammonium alum solution precipitates ammonium aluminum carbonate which may be heated to produce alumina, ammonia, and carbon dioxide. The remaining iron rich liquor also contains magnesium sulfate. The addition of oxalic acid generates insoluble ferrous oxalate which is thermally decomposed to ferrous oxide and carbon monoxide which is used to reduce the ferrous oxide to metallic iron. Further oxalic acid addition precipitates magnesium oxalate which is thermally decomposed to magnesium oxide.
摘要:
A method of manufacturing a ferrous oxide nanoparticle includes a water removing step raising temperature of a solution containing an iron oxide, an organic acid dissolving the iron oxide, and a first solvent to a first temperature and removing water in the solution, a second temperature maintaining step raising the first temperature to a second temperature and maintaining the second temperature, and a particle extracting step extracting the ferrous oxide nanoparticle from the solution after the second temperature maintaining step.
摘要:
The present invention relates to an urchin-like iron oxide and a method for producing the urchin-like iron oxide. The urchin-like iron oxide comprises a core and multiple needle-like elongations protruded from the core. The needle-like elongations could be wire, rod, tube, cone, and flake. The length/width ratio of the needle-like elongation is high enough to apply in an optoelectronic field. The method in accordance with the present invention is to stably heat an iron-contained powder under room temperature by a thermal oxidation. The surface of the iron-contained powder is slow oxidized to form an urchin-like iron oxide with multiple uniform distributed needle-like elongations protruded from the surface. The size of each needle-like elongation is easily adjusted and changed by controlling the heating temperature. The method has advantages of simplified operation and lowered expense.
摘要:
Disclosed is a method for producing carbon filaments by dissociating a carbon-containing gas at a temperature to about 800.degree. C. in the presence of iron monoxide. The iron monoxide can be produced by treating a sample of substantially pure iron with steam at a temperature from about 540.degree. C.
摘要:
Crystalline α-Fe2O3 nanoparticles prepared by ultrasonic treatment of a solution of an iron (III)-containing precursor and an extract from the seeds of a plant in the family Linaceae. The crystalline α-Fe2O3 nanoparticles have a spherical morphology with a diameter of 100 nm to 300 nm, a mean surface area of 240 to 260 m2/g, and a type-II nitrogen adsorption-desorption BET isotherm with a H3 hysteresis loop. The crystalline α-Fe2O3 nanoparticles have a band gap of 2.10 to 2.16 eV and a mean pore size of 7.25 to 9.25 nm. A method for the photocatalytic decomposition of organic pollutants using the crystalline α-Fe2O3 nanoparticles. An antibacterial composition containing the crystalline α-Fe2O3 nanoparticles.
摘要:
The present disclosure provides a method for separating iron element in brine and application thereof. The method for separating iron element in brine comprises: adding a pH adjusting agent to brine, to adjust pH of the brine to 6.0-7.0, and controlling the temperature of the brine to 75° C.-90° C.; introducing an oxygen-containing gas into the brine, to covert the iron element in the brine into magnetic iron oxide; and separating the magnetic iron oxide from the brine by magnetic adsorption to obtain an iron-removed brine.
摘要:
Pyrophoric material such as iron sulfide is frequently found in refinery equipment. When the equipment is opened to the atmosphere for maintenance, an exothermic reaction can take place that may cause injury to personnel and catastrophic damage to equipment. A process used to treat pyrophoric material uses sodium nitrite injected into a gaseous carrier stream to oxidize iron sulfides to elemental sulfur and iron oxides. The sodium nitrite solution may be buffered to a pH of about 9 with disodium phosphate or monosodium phosphate. A chemical additive that provides a quantitative measure of reaction completion may be added to the treatment solution.
摘要:
The invention involves the formation of a stable iron (II) oxide and/or hydroxide. Preferably these oxides and/or hydroxides are present as nanoparticles in the 5-10 nanometer range. It has been discovered that such particles can be formed at lower cost and with fewer impurities by using ferrous carbonate (FeCO3) from siderite as compared to known processes from various iron salts such as sulfates and chlorides. The novel nanoparticles are particularly adapted to removing sulfur compounds such as H2S from liquid and/or gaseous streams, such as hydrocarbon streams.