Abstract:
A method is provided for forming a metal battery electrode with a pyrolyzed coating. The method provides a metallorganic compound of metal (Me) and materials such as carbon (C), sulfur (S), nitrogen (N), oxygen (O), and combinations of the above-listed materials, expressed as MeXCYNZSXXOYY, where Me is a metal such as tin (Sn), antimony (Sb), or lead (Pb), or a metal alloy. The method heats the metallorganic compound, and as a result of the heating, decomposes materials in the metallorganic compound. In one aspect, decomposing the materials in the metallorganic compound includes forming a chemical reaction between the Me particles and the materials. An electrode is formed of Me particles coated by the materials. In another aspect, the Me particles coated with a material such as a carbide, a nitride, a sulfide, or combinations of the above-listed materials.
Abstract:
A method is provided for forming a metal battery electrode with a pyrolyzed coating. The method provides a metallorganic compound of metal (Me) and materials such as carbon (C), sulfur (S), nitrogen (N), oxygen (O), and combinations of the above-listed materials, expressed as MeXCYNZSXXOYY, where Me is a metal such as tin (Sn), antimony (Sb), or lead (Pb), or a metal alloy. The method heats the metallorganic compound, and as a result of the heating, decomposes materials in the metallorganic compound. In one aspect, decomposing the materials in the metallorganic compound includes forming a chemical reaction between the Me particles and the materials. An electrode is formed of Me particles coated by the materials. In another aspect, the Me particles coated with a material such as a carbide, a nitride, a sulfide, or combinations of the above-listed materials.
Abstract:
Eco-friendly systems, methods and processes/processing (EFSMP) or an integrated Matrix encompasses stand-alone and/or interconnected modules for completely self-sustained, closed-loop, emission-free processing of multiple source feedstock that can include pretreatment, with poisoning materials isolated during pretreatment being further recycled to provide useful materials such as, for example, separated metals, carbon and fullerenes for production of nano materials, sulfur, water, sulfuric acid, gas, heat and carbon dioxide for energy production, and production of refined petroleum, at a highly-reduced cost over the best state-of-the-art refining methods/systems that meets new emissions standards as well as optimizes production output with new ultra-speed cycle times. By-products from the petroleum refining process which were previously discarded also now are recycled as renewable sources of energy (water, waste oil and rubber/coal derived pyrolyic (pyrolysis) oil, carbon gases and process gases), or recyclable resources, such as metals and precious metals, oxides, minerals, etc., can be obtained.
Abstract:
The invention relates to the use of at least one compound of formula (1): R-Sn-R′ (1) wherein R and R′ are each a hydrocarbon radical containing between 1 and 12 carbon atoms and n is a whole number between 1 and 8, for maintaining the viscosity of liquid sulfur at a value lower than 60,000 mPa·s, preferably lower than 30,000 mPa·s, especially preferably lower than 10,000 mPa·s. The invention also relates to a method for preparing low-viscosity liquid sulfur and to liquid sulfur compositions comprising at least one compound of formula (1).
Abstract:
This invention relates to a method and apparatus for gasifying or liquifying coal. In particular, the method comprises reacting a coal with a molten aluminum or aluminum alloy bath. The apparatus includes a reaction vessel for carrying out the reaction, as well as other equipment necessary for capturing and removing the reaction products. Further, the process can be used to cogenerate electricity using the excess heat generated by the process.
Abstract:
Elemental sulfur is combined with either liquid anhydrous ammonia, liquid sulfur dioxide, or both to form a solution or slurry which is transportable through pipelines or other transport vessels without a risk of clogging due to the environmental temperature drops that these vessels typically encounter. This unusual behavior and the advantages it offers arise from the discovery of unexpected solubility vs. temperature relationships of elemental sulfur in each of these two carriers. Among the advantages are significant improvements in the economics of many industrial chemical processes that involve the presence of sulfur either in elemental or chemically combined form, including natural gas or tar sands production and processing, hydrogen sulfide abatement, hydrogen production without carbon dioxide emissions, and sulfur extraction from ores, subterranean deposits, depositories, or fouled impaired industrial facilities. Large-scale ramifications for energy and fertilizer mineral resource utilization, greenhouse gas abatement, hydrogen economy, and nitrogen fertilizer production are taught.
Abstract:
AN IMPROVED METHOD OF TRANSPORTING SULFUR-LIQUID HYDROCARBON SLURRIES THROUGH PIPELINES WITHOUT CAUSING SULFUR AGGLOMERATION, STICKING, DEPOSITION OR PLUGGING OF THE PIPELINE.
Abstract:
An improved method of transporting sulfur-liquid hydrocarbon slurries through pipelines without causing plugging or corrosion of the pipelines by addition thereto of a small amount of an organic sulfonate.
Abstract:
An improved method of transporting sulfur-liquid hydrocarbon slurries through pipelines without causing sulfur agglomeration, sticking, deposition or plugging of the pipelines. The invention relates to an improved and novel process of preventing sulfur agglomeration, sticking, deposition and plugging of pipelines transporting sulfur in the form of a sulfur-liquid hydrocarbon slurry.