摘要:
The invention relates to biodegradable iron alloy-containing compositions for use in preparing medical devices. In addition, biodegradable crystalline and amorphous compositions of the invention exhibit properties that make them suitable for use as medical devices for implantation into a body of a patient. The compositions include elemental iron and one or more elements selected from manganese, magnesium, zirconium, zinc and calcium. The compositions can be prepared using a high energy milling technique. The resulting compositions and the devices formed therefrom are useful in various surgical procedures, such as but not limited to orthopedic, craniofacial and cardiovascular.
摘要:
A ductile iron composition including, by weight: about 3.4% to about 4.0% Si; about 3.0% to about 3.5% C; about 0.5% to about 1.0% Cr; about 0.02% to about 0.05% Mo; up to about 0.01% S; up to about 0.5% Mn; and balance iron and incidental impurities. The composition has a a ferritic body center cubic microstructure and has a graphite nodule density of greater than 100 per mm2. A method for forming a ductile iron composition is also disclosed.
摘要:
A ductile iron composition including, by weight: about 3.4% to about 4.0% Si; about 3.0% to about 3.5% C; about 0.5% to about 1.0% Cr; about 0.02% to about 0.05% Mo; up to about 0.01% S; up to about 0.5% Mn; and balance iron and incidental impurities. The composition has a a ferritic body center cubic microstructure and has a graphite nodule density of greater than 100 per mm2. A method for forming a ductile iron composition is also disclosed.
摘要:
This invention covers the method and equipment for the continuous or discontinuous addition of reaction/inoculation materials necessary for desulphurization or the production of ductile iron obtainable during the passage of the base iron through a basin containing the chamber for melting, vaporizing and distributing the reaction-inoculation materials into the melt (e.g. magnesium vapor-Ferrum Silicon). The treatment can be conducted continuously for unlimited or freely definable quantities of iron.
摘要:
A magnesium treatment process is proposed for the production of a treated iron melt containing less than 100 grams per ton non-metallic inclusions. The treatment reaction is so arranged that the magnesium is introduced into the melt from a chamber at a depth of at least 200 mm below the surface of the melt. Thus, the quantity of vaporized magnesium produces a mixing energy of at least 1,000 W/m.sup.3, which ensures the necessary elimination of non-metallic inclusions. The surface of the molten mass is covered by a non-oxidizing, preferably a reducing atmosphere.
摘要翻译:提出了一种镁处理工艺,用于生产含有少于100克/吨非金属夹杂物的处理铁熔体。 处理反应如此布置,使得镁从在熔体表面下方至少200mm深度的室引入熔体中。 因此,蒸发的镁的量产生至少1,000W / m 3的混合能量,这确保了非金属夹杂物的必要消除。 熔融物质的表面被非氧化性,优选还原气氛覆盖。
摘要:
The present invention relates to a dispensing equipment for adding inoculants to the stream of molten iron flowing from the spout of a tilting ladle. The dispensing equipment comprises a hopper (4) for the inoculant which hopper has an outlet opening (5) which extends through the wall of a first pipe 6. Means (9) is arranged for continuously and adjustably transportation of inoculant from the hopper (4) through the first pipe (6) and a second pipe 8 into the spout (1) of the ladle. The second pipe (8) is rotatably connected to the first pipe (6). A mounting frame (18) is suspended from the first pipe (6) by means of at least two bearings (16, 17), which bearings (16, 17) are rotatably arranged about the first pipe (6). The mounting frame (18) is firmly affixed to the second pipe (8), and a mounting arm (21) is fixed to the mounting frame (18), said mounting arm being intended to cooperate with a mounting bracket (3) on the ladle spout (1).
摘要:
A process for the manufacture of cast iron containing vermicular graphite is described, in which nodular cast iron (GGG) is used as a starting melt. The GGG melt can be produced in a converter in a precise and reproducible way, whereby the sulphur and oxygen contents of the GGG melt are limited within narrow ranges. Additional sulphur is added to the GGG melt in an amount determined by an empirical formula depending on the magnesium and sulphur contents of the GGG melt to produce cast iron containing vermicular graphite (GGV). The GGV is produced by the present process with precision and in a reproducible manner.
摘要:
An apparatus (1) for storing and maintaining the temperature level of molten metals, such as a cast iron melt which has been treated with pure magnesium. The apparatus includes a heatable furnace chamber (3) having a pressure-tight cover (4) and an inlet and an outlet (2), which also may be provided with a cover (6). The inlet and outlet (2) is preferably formed as a common inlet and outlet siphon. The closed furnace chamber (3) is supplied with a medium such as argon or nitrogen under pressure. A cast iron melt which has been treated with particular additives can be maintained at a certain temperature over longer periods of time with a decaying effect.
摘要:
A method of keeping inductor spouts, downgates and outlet casting channels and the like free of deposits during the production of a cast iron melt involves treatment with pure magnesium. Such deposits, which occur as reaction products and block the channels causing considerable maintenance expense, are prevented by the use of pure magnesium. The cast iron melt is flushed free of suspended highly basic reaction products, such as MgO, CaO, Al.sub.2 O.sub.3, FeO and MgS, in a predetermined magnesium treatment of the cast iron melt with pure magnesium by a simultaneous evaporation of magnesium not consumed in the magnesium treatment. By preventing the formation of deposits, the life of the vessel used is increased and maintenance costs are decreased.
摘要翻译:在生产铸铁熔体期间保持不含沉积物的电感器喷口,下部浇口和出口铸造通道等的方法包括用纯镁处理。 通过使用纯镁可以防止这种作为反应产物发生并堵塞导致相当大的维护费用的沉积物。 在预定的镁处理铸铁熔体中,通过镁在镁中不被消耗的同时蒸发,将铸铁熔体在没有悬浮的高度碱性的反应产物如MgO,CaO,Al 2 O 3,FeO和MgS中进行冲洗。 治疗。 通过防止沉积物的形成,使用的容器的使用寿命增加,维护成本降低。
摘要:
A method is disclosed for making compacted graphite cast iron of improved strength and hardness while retaining excellent thermal conductivity, low shrinkage, and excellent damping characteristics. A ferrous alloy is melted consisting essentially of, by weight, 3-4% C, 2-3% Si, 0.2-0.7% Mn, 0.25-0.4 Mo, 0.5-3.0% Ni, up to 0.002% sulfur, up to 0.02% phosphorus, and impurities or contaminants up to 1.0%, with the remainder being essentially iron. The melt is subjected to a graphite modifying agent to form compacted graphite upon solidification. The solidified casting is heat treated by austempering and quenching to produce an iron having a matrix of bainite and austenite.