Abstract:
Disclosed is a clutch apparatus for use in two-phase position control, which includes a clutch housing for supporting and rotating together with the shaft and a driving gear for selectively driving the housing in a rotatable manner with the help of a clutch intervened between the housing and the driving gear. The clutch apparatus has a solenoid unit for supporting the housing and is capable of being selectively on/off-controlled. The housing has an initial position controlling protuberance interfered with the solenoid unit in its on-state, for determining an initial position of the object, and a pair of phase protuberances interfered with the solenoid unit in its off-state, for suppressing rotation of the housing at each of the two phase positions of the object.
Abstract:
The present invention provides a rotor coupling having insulated structure which can assuredly prevent galvanic corrosion of beating members, rotors and the like which is caused by shaft voltage, in a shaft system that requires insulation in which a generator is disposed in between a steam turbine and a gas turbine or a rotating machinery such as another steam turbine. The rotor coupling having insulated structure of the present invention is employed in power generating equipment in which a generator is disposed in between a steam turbine and a gas turbine or a rotating machinery such as another steam turbine, a generator rotor and a rotating machinery rotor are connected, a first grounding electrode is provided to the steam turbine rotor, and a second grounding electrode is provided to the generator rotor, wherein both the rotors between the generator and the steam turbine are connected in an electrically insulated state.
Abstract:
A wet type friction clutch and an electromagnetic clutch is disclosed wherein a pilot clutch 61 is disposed in a magnetic flux path 95 of an electromagnet 57 and is kept between an armature 71 and the electromagnet 57. Upon excitation of the electromagnet 57, the armature 57 is retracted to allow the pilot clutch 61 to be coupled. The pilot clutch 61 includes a plurality of clutch plates 87, 89 which are interleaved with respect to one another for sliding movements. Adjacent clutch plates 87, 87A, 87B, 89, 89A, 89B, 89C, 89D, 89E, 89F are formed with oil guide passageways 86, 96, 98, 106, 108, 110, 114 to create a hydrodynamic pressure effect to allow the clutch plates to be separated with a limited drag torque. Further, the clutch plate has magnetic flux path forming portions 89b, 89c, at inner and outer peripheral sides, between which through-bores 112 are formed to allow bridge portions 120 to be intervened between the through-bores, with each of the bridge portions being configured such that opposing walls of the bridge portions of adjacent clutch plates have reduced contact surface areas to eliminate a leakage of a magnetic flux.
Abstract:
A torque limiter of the present invention includes: a first rotor and a second rotor; a magnet which is provided so as to be in contact with the first rotor; and a hysteresis board provided so as to be opposed to the magnet with a space therebetween, wherein the hysteresis board is integrally formed with the second rotor, and first and second washers are provided between the first and second rotors so as to be in contact with one another.
Abstract:
An adjustable coupler has a group of magnet rotors with permanent magnets separated by air gaps from non-ferrous conductor rotors presented by a group of conductor rotors. One of the rotors is mounted to its shaft via a slidable hub. The hub and the rotor attached thereto rotate with the shaft, but are movable lengthwise along the shaft. The air gaps are adjusted by axial movement of the hub and one of the groups relative to the other to vary the slip of the coupler and control the load speed under varying load conditions.
Abstract:
An open-end spinning rotor (3) is supported by its rotor shaft (4) in a spinning-rotor bearing (5) with the rotor shaft (4) detachably connected via a coupling device (29) to a rotor cup (26) such that the rotor shaft (4) remains supported in the spinning-rotor bearing (5) when the rotor cup (26) is removed. The coupling device (29) comprises a magnetic device (30) for fixing rotor shaft (4) and rotor cup (26) axially relative to one another and a mechanical rotational safety mechanism (31) for fixing rotor shaft (4) and rotor cup (26) radially relative to one another.
Abstract:
A clutch actuator unit comprises a housing (8, 9), a screw mechanism and an actuator head which at one end engages the screw mechanism (1, 2) and at the other end has an actuating end (18), which actuator head (16) can be displaced in axial direction by the screw mechanism upon driving the screw mechanism. The actuating end (18) of the actuator head (16) is displaceable in transverse direction with respect to the screw mechanism as well.
Abstract:
A coupling assembly for agricultural implements has a friction coupling (1), an electromagnet (6) and control mechanism (7). The friction coupling (1) includes a friction assembly (4) which is loaded by a pressure plate (14). The pressure plate (14) is loaded by pressure springs (15, 16). The pressure plate (14) is adjustable by an actuating device (5) which includes an electromagnet (6) and an anchor plate (19). The control mechanism (7) includes a control member (27) which, by changing the electric current, regulates the pressure force of the pressure plate (14) during the coupling and/or uncoupling operation. The housing (2) and the hub (3) are associated with speed sensors (25, 26) which transmit a signal to the control mechanism (7) to relieve the load on the friction assembly. Thus, this prevents the friction coupling (1) from overheating.
Abstract:
A multiple-disc clutch pack. The clutch pack comprises a plurality of porous metal plates mounted concentrically and each having a first and a second surface with at least one of the surfaces impregnated with a magneto-rheological substance. A plurality of grooves is defined on at least one of the surfaces of at least one of the plates.
Abstract:
The invention is based on an apparatus for actuating a clutch, in particular for motor vehicle power units, comprising an electronically controllable clutch acutator (10, 42) that comprises an electric motor (12, 44) and a reduction control gear (14; 48, 52; 50, 54) and acts upon a clutch (36) via a transmission link (30). It is proposed that a plurality of electric motors (12, 44) acts upon a clutch (36) jointly in parallel and/or in series.