Abstract:
The present invention provides a test device for detecting the presence or absence of a selected analyte in a liquid sample. The test device includes a reagent member having a body, a first color-labeled binding reagent specific for a first binding site of said analyte; wherein said body is adapted to retain said first color-labeled specific binding reagent when said body and said first color-labeled binding reagent are dry, and to release said first color-labeled specific binding reagent when said body and said first color-labeled specific binding reagents are moist, a porous carrier; and a detection zone having a second color-labeled binding reagent specific for a second binding site of said analyte, wherein said second color-labeled specific binding reagent is immobilized in said detection zone, wherein said first specific binding site and said second binding site are different, and wherein in said first and second labeled specific binding reagents are capable of forming a third color-labeled complex with said analyte, said complex comprising said first color-labeled specific binding reagent, said analyte, and said second color-labeled specific binding reagent; wherein said first color, said second color-label, and said third color are visually distinguishable from one another by the human eye; wherein said reagent member, porous carrier, and detection zone are arranged so that a fluid applied to said test device would travel sequentially from said reagent member to said porous carrier and to said detection zone. The test device is typically dry before use and moist during use.
Abstract:
A test strip for detecting an analyte in liquid or homogenised samples, with a section which may be brought into contact with the sample and with at least one first defined region on the test strip in which detection reagents are immobilised which bind the prion protein. A device is also provided that permits simultaneous testing of several samples in sample containers, provided in a group with a defined geometrical arrangement. The device includes a holder in which several test strips are fixed in an arrangement corresponding to the defined geometrical arrangement of the sample containers, such that the lower section thereof may be introduced into each of the sample containers.
Abstract:
Methods for quantitatively measuring the amount of an analyte of interest in a fluid sample are disclosed. The methods involve providing a membrane having an application point, a contact region comprising analyte-binding particles, a sample capture zone, and a control capture zone, where the contact region is between the application point and the sample capture zone, and the sample capture region is between the contact region and the control capture zone. In the assays, a fluid allows transport components of the assay by capillary action through the contact region, to and through the sample capture zone and subsequently to and through the control capture zone. In a nullsandwich assaynull embodiment, the amount of analyte in the fluid sample is related to a corrected analyte-binding particle amount, which can be determined, for example, as a ratio of the amount of analyte-binding particles in the sample capture zone and the amount of analyte-binding particles in the control capture zone. In a nullcompetitive assaynull embodiment, the membrane has an application point, a contact region comprising analyte-coated particles, a sample capture zone, and a control capture zone, where the contact region is between the application point and the sample capture zone, and the sample capture zone is between the contact region and the control capture zone. In this nullcompetitive assaynull embodiment, the amount of analyte in the fluid sample is inversely related to a corrected analyte-coated particle amount, which can be determined, for example, as a ratio of the amount of analyte-coated particles in the sample capture zone and the amount of analyte-coated particles in the control capture zone.
Abstract:
The present invention relates to a device for the simultaneous conduction of a multiplicity of binding reactions on a substrate with a first surface, said surface comprising discrete and isolated locations of one such binding reaction, said binding reaction being generated upon contact between the substrate and a fluidic sample comprising one or more target molecules capable of binding with at least one receptor molecule at least partly tethered to said first surface of the substrate, and further comprising means for enhancing the diffusion fluidic flow of the sample over the substrate, whereby said means for enhancing the diffusion fluidic flow comprises shear-force field generating means, whereby said means comprise a second surface positioned in a flow interacting manner in said flow channel, said second surface is able to be moved in a substantial parallel mode over the first surface. The invention further relates to a method for binding one or more target molecules comprised within a fluid sample to at least one receptor molecule at least partly tethered to a first surface in a flow channel, wherein said target molecules are transported parallel to said first surface by means of shear-force field generating means, wherein the shear-force field generating means comprises a second surface, which second surface is moved in a substantially parallel mode past or over said first surface.
Abstract:
Rapid lateral flow immunoassays have an extensive history of use in both the clinical and home settings. These devices are used to test for a variety of analytes, such as drugs of abuse, hormones, proteins, urine or plasma components and the like. The present invention provides an improved procedural control that indicates to the test user that at least a portion of the applied sample has passed through the test result zone of the test strip, and optionally that the test is complete and the test results may be read.
Abstract:
Antibodies to tumor necrosis factor receptors (TNF-Rs) are disclosed together with methods of producing them and methods of use of such antibodies in immunoassays and purification of TBP-II by affinity chromatography. A diagnostic assay for endogenous antibodies to TBP-II is also disclosed.
Abstract:
The invention provides methods for the treatment of surfaces using surface adsorbing polymers, methods for decreasing the adsorption of organic materials onto the surface of treated devices or vessels, methods for performing fluid operations involving the treatment of surfaces, and apparatus and systems comprising the treated surfaces. Further, the present invention provides a method for treating the surface of microfluidics channel wherein the microfluidics surface is coated for deactivation and wherein this coating can be easily regenerated. The present invention also provides a method for treating the surface of a plastic device. The surface adsorbing polymers of the invention are particularly stable at temperatures and conditions required for biochemical reactions, especially in applications involving temperature cycling or polymerization of polynucleotides or polypeptides.
Abstract:
The invention concerns a biological assay device using a reaction between an analyte present in a fluid and a reagent capable of forming a complex with said analyte, wherein the analyte is in the form of cellular elements, said device comprising at least a reaction container (1) provided with a reaction zone (2) wherein are introduced the fluid and the reagent, and with an immobilizing zone (3) whereon is fixed a substance (4) capable of specifically binding with the possibly formed complexes, the reaction zone (2) and the immobilizing zone (3) being separated from each other by a material layer (8), said material being capable of shifting from one first state wherein the layer (8) is substantially impermeable to a second state wherein the layer (8) is capable of allowing through the cellular elements, whether complexed or not.
Abstract:
A membrane-based assay device for detecting the presence or quantity of an analyte residing in a test sample is provided. The device utilizes a self-calibrated magnetic binding assay format (e.g., sandwich, competitive, etc.) that includes detection probes capable of generating a detection signal (e.g., fluorescent non-magnetic particles) and calibration probes capable of generating a calibration signal (e.g., fluorescent magnetic particles). The amount of the analyte within the test sample is proportional (e.g., directly or inversely) to the intensity of the detection signal calibrated by the intensity of the calibration signal. It has been discovered that the fluidics-based device of the present invention provides an accurate, inexpensive, and readily controllable method of determining the presence of an analyte in a test sample.
Abstract:
An embodiment of the present invention provides a method for performing a lateral flow assay. The method includes depositing a sample on a test strip at an application region, detecting a first detection signal arising from the test strip in the first detection zone, and generating a baseline for the first measurement zone by interpolating between values of the detection signal outside of the first measurement zone and inside of the first detection zone. The method may include locating a beginning boundary and an ending boundary for the first measurement zone on the test strip. Additional detection zones having measurement zones may also be incorporated with the embodiment.