Abstract:
A hemisphere accelerating electrode has a double structure composed of an inner accelerating electrode and an outer accelerating electrode. The inner accelerating electrode has an inner introducing inlet and an inner opening, and the outer accelerating electrode has an outer introducing inlet and an outer opening. The aperture angle of the inner introducing inlet is preferably larger than that of the outer introducing inlet by 0.1-5 degrees. Then, the aperture angle of the inner opening is preferably larger than that of the outer opening by 0.1-5 degrees. Moreover, scattered electron detectors have correcting electrodes, respectively, and are arranged in the shifted directions from the introducing direction of electrons by 100-140 degrees.
Abstract:
A positron producing apparatus which includes a vacuum chamber with a source of positrons to be supplied into the vacuum chamber forming a positron cloud within a Penning Trap. The positron cloud is to be compressed producing a thin positron beam which is extracted from the cloud and is smaller in cross-sectional area than the cloud. The positron beam is to be transmitted to a focusing apparatus which transmits the positron beam onto a solid target. The vacuum chamber is to include a cooling gas to be supplied into the vacuum chamber and a compressing device for the positron cloud is to include a rotating electric field. A method for compressing the positron cloud to produce a thin positron beam, which is to be transmitted to a solid for the purpose of analyzing properties of the solid, comprises the steps of supplying a source of positrons within a vacuum environment, forming and containing the positron cloud within a Penning Trap, producing a positron beam, and focusing of that positron beam onto a solid. The method is also to include adding of a cooling gas within the vacuum environment.
Abstract:
A method for process monitoring includes receiving a sample having a first layer that is at least partly conductive and a second layer formed over the first layer, following production of contact openings in the second layer. A beam of charged particles is directed along a beam axis that deviates substantially in angle from a normal to a surface of the sample, so as to irradiate one or more of the contact openings in each of a plurality of locations distributed over at least a region of the sample. A specimen current flowing through the first layer is measured in response to irradiation of the one or more of the contact openings at each of the plurality of locations. A map of at least the region of the sample is created, indicating the specimen current measured in response to the irradiation at the plurality of the locations.
Abstract:
Process for charging a structure (1) formed from an insulating body (2) sandwiched between two electrodes (3, 4), characterized in that it comprises the following steps: A Faraday cage (9) is placed in contact with one of the electrodes (3) of the structure (1), the potential of the other electrode (4) being made equal to a reference potential. Electrons originating from a controlled electron emission device (6) are introduced into the Faraday cage (9), the electrons reaching the electrode (3) with which it is in contact in order to charge the structure (1). Application particularly for the determination of properties of insulating materials.
Abstract:
A scattering target constituting an electron spin analyzer is supported by a scattering target-holding member made of a conductive material from the outside of the space formed by an accelerating electrode and an electrode supporter. Then, the scattering target-holding member is supported in insulation by an insulation supporting member made of an insulating material. Moreover, a guiding member is provided so as to cover the periphery of the insulation supporting member for guiding the scattering target, the scattering target-holding member and the insulation supporting member.