Abstract:
An electron beam apparatus prevents a rapid increase of dosage caused by stoppage or deceleration of movement and protects the specimen when the specimen is irradiated with the electron beam while the specimen and the electron beam are being relatively moved. An electron beam source outputs the electron beam. The dosage of electron beam irradiated per unit area of the specimen is measured. A storage section stores a predetermined dosage per unit area in memory for the specimen. A detector detects over exposure of the electron beam when the measured dosage per unit area is greater than the dosage per unit area stored in the storage section. A controller controls the electron beam source to reduce the dosage per unit area of the electron beam lower than the dosage per unit area stored in the storage section.
Abstract:
A scanning transmission electron microscope has an electron beam energy analyzer (energy filter) to observe electron beam energy loss spectra and element distribution images. This electron microscope further includes a deflection coil provided on the upstream side of a magnetic prism to correct for the electron beam path in a plane normal to the optical axis and make the electron beam incident to the energy filter, a deflection coil for correcting for the electron beam path in the energy axis direction of an energy dispersion surface formed by the magnetic prism, and a control unit for controlling the exciting conditions of the deflection coils.
Abstract:
There are disclosed particle-optical beam splitters providing at least three beam-manipulating regions having magnetic fields of different field strengths provided therein for at least one particle beam passing the beam splitter. The beam splitter is, in first order, free of dispersion, astigmatism and distortion.
Abstract:
An examining system for imaging an object positionable in an object plane, includes an illumination device for supplying energy to a delimited field of the object such that charged particles emerge from locations of the field, the field being displaceable in the plane of the object, a first deflector for providing a variable deflection field for guiding charged particles emerging from locations of a selectable region of the object through a fixed, predetermined beam cross-section, and a position-sensitive detector disposed in the beam path such that the charged particles, after having passed through the first deflector, impinge on the position-sensitive detector, wherein particles emerging from different locations of the region are imaged on different locations of the position-sensitive detector which are allocated to the locations of emergence.
Abstract:
A transmission electron microscope (TEM) equipped with an energy filter which functions, the microscope being characterized in that rotation of the created image or diffraction pattern is prevented. The microscope has 6 lens systems, i.e., objective lens system, four intermediate lens systems, and projector lens system. If the mode of operation is varied, the total sum of the products of the numbers of turns of wire on the coils of the lenses of the various lens systems including the objective lens system, the four intermediate lens systems, and the projector lens system, and their respective excitation currents is kept constant.
Abstract:
A scanning electron microscope using the retarding method and the boosting method includes a sample holder for holding a sample on the sample holder; a shield electrode arranged between an object lens and the sample, in which an aperture for passing said primary electron beam is formed; a negative-voltage applying circuit for applying a negative voltage to the sample holder and the shield electrode; an acceleration tube located in an electron-beam passing hole in the object lens, provided to pass a primary electron beam, for further accelerating the primary electron beam; and a control electrode located between the acceleration tube and the sample, in which an aperture whose size is smaller than the aperture formed in said shield electrode is provided to pass the primary electron beam, a positive voltage in the positive direction to the negative voltage being applied to the control electrode, superimposed on the negative voltage.
Abstract:
Disclosed here is a high resolution scanning electron microscope having an in-lens type objective lens. The microscope is structured so as to detect transmission electrons scattering at wide angles to observe high contrast STEM images according to each sample and purpose. A dark-field detector is disposed closely to the objective lens magnetic pole. The microscope is provided with means for moving the dark-field detector along a light axis so as to control the scattering angle of each detected dark-field signal.
Abstract:
A transmission electron microscope capable of obtaining a high-resolution, wide field-of-view TEM image corresponding to the spatial resolution of the existing transmission electron microscope is accomplished using CCD TV cameras. The microscope includes four CCD cameras, for example, having their fiber tubes tilted. The first fiber tube is tilted from a point A toward a point B. The second fiber tube is tilted from the point A toward a point E. The third fiber tube is tilted from the point A toward a point D. The fourth fiber tube is tilted from the point A toward a point C. CCD mounts are prevented from interfering with each other by tilting the fiber tubes in this way.
Abstract:
This invention relates to a method for increasing the measurement information available from a transmission electron microscope, said information relating to a measurement sample, comprising the step of: including, in said transmission electron microscope, an atomic force microscopy device. This invention also relates to a transmission electron microscopy device, characterised in that a transmission electron microscope is combined with an atomic force microscope, positioned within said transmission electron microscope. Finally, the invention relates to a device for insertion in a transmission electron microscope, characterised in that said device comprises an atomic force microscopy device.
Abstract:
A scanning confocal microscope and methods are provided for configuring scanning confocal microscopes for imaging specimens, such as, high resolution imaging of thick non-optically transparent specimens including imaging of buried or subsurface features of thick non-optically transparent structures. The scanning confocal microscope, such as a scanning confocal electron microscope (SCEM), is configured to image structures buried in thick specimens, such as specimens greater than eight microns thick, utilizing confocal imaging principles. A scanning confocal microscope includes an illumination source, a specimen, and a detector. The illumination source provides a focused radiation beam that is applied to the specimen. The detector detects an interaction signal from the specimen. The scanning confocal microscope is configured to operate in the confocal imaging mode, where the imaging source, specimen and detector are arranged to be located at conjugate image points. The focused radiation beam provided by the illumination source includes an electron beam, a proton beam, an ion beam, or an x-ray beam. The focused radiation beam provided by the illumination source is capable of penetrating thick non-optically transparent specimens, unlike visible light or optical probes that cannot penetrate significant depths in optically dense specimens. The incident probe is sequentially scanned across a region of interest of the specimen and the net integrated confocal intensity at each point is detected and used to provide an image display. A scanning confocal electron microscope (SCEM) is provided that permits resolutions better than 100 nanometers for materials as thick as 8-10 microns. The image resolution provided is equal to or better than typical high flux x-ray sources, while operating at speeds up to one hundred times faster and the scanning confocal microscope can be located in a conventional laboratory space.