Abstract:
A method of depositing a dielectric film on a substrate in a process chamber of an inductively coupled plasma-enhanced chemical vapor deposition reactor. Gap filling between electrically conductive lines on a semiconductor substrate and depositing a cap layer are achieved. Films having significantly improved physical characteristics including reduced film stress are produced by heating the substrate holder on which the substrate is positioned in the process chamber.
Abstract:
A cathode arc source has means for generating first and second magnetic fields, of opposite or reverse direction to each other. The resultant magnetic field includes a null point between the target and the substrate, though close to the target. Field strength normal to the target is zero at the null point, and field strength lateral to the target is strong at the target surface, constraining movement of the arc spot and reducing the risk of migration off the target surface. A target is made by pressing graphite powder at elevated temperature and pressure in the absence of binding material. Both source and target contribute to reduced macroparticles in deposited films.
Abstract:
A radiation source constructed in accordance with the invention is particularly suited for use in processing semiconductor wafers. An exemplary embodiment of the invention includes a base electrode having a two dimensional surface bounding one side of a radiation emitting region. An ionizable, excimer gas is present in the radiation emitting region. The excimer gas, when energized, emits radiation in the UV and/or VUV wavelengths. A two dimensional dielectric radiation transmissive layer bounds an opposite side of the radiation emitting region and transmits radiation to a wafer treatment region. Disposed between the dielectric radiation transmissive layer and a protective radiation transmissive window is a two dimensional matrix or screen electrode defining a plane generally parallel to the two dimensional surface of the base electrode region. A power supply coupled to the base and matrix electrodes to energize the electrodes and the eximer gas causing emission of UV and/or VUV radiation. The range of wavelengths transmitted to the wafer treatment region can be “tuned” by using a filter disposed adjacent to the protective window which functions to block transmission of selected wavelengths of emitted radiation.