Abstract:
A plasma processing system for plasma processing of substrates such as semiconductor wafers. The system includes a plasma processing chamber, a substrate support for supporting a substrate within the processing chamber, a dielectric member having an interior surface facing the substrate support, the dielectric member forming a wall of the processing chamber, a gas injector fixed to, part of or removably mounted in an opening in the dielectric window, the gas injector including a plurality of gas outlets supplying process gas into the chamber, and an RF energy source such as a planar or non-planar spiral coil which inductively couples RF energy through the dielectric member and into the chamber to energize the process gas into a plasma state. The arrangement permits modification of gas delivery arrangements to meet the needs of a particular processing regime. In addition, compared to consumable showerhead arrangements, the use of a removably mounted gas injector can be replaced more easily and economically.
Abstract:
A plasma processing system for plasma processing of substrates such as semiconductor wafers. The system includes a plasma processing chamber, a substrate support for supporting a substrate within the processing chamber, a dielectric member having an interior surface facing the substrate support, the dielectric member forming a wall of the processing chamber, a gas injector fixed to, part of or removably mounted in an opening in the dielectric window, the gas injector including a plurality of gas outlets supplying process gas into the chamber, and an RF energy source such as a planar or non-planar spiral coil which inductively couples RF energy through the dielectric member and into the chamber to energize the process gas into a plasma state. The arrangement permits modification of gas delivery arrangements to meet the needs of a particular processing regime. In addition, compared to consumable showerhead arrangements, the use of a removably mounted gas injector can be replaced more easily and economically.
Abstract:
A vacuum plasma processor for treating a workpiece with an RF plasma has a plasma excitation coil including interior, intermediate and peripheral portions. The interior and peripheral portions have turns connected to each other and arranged so the magnetic flux density coupled to the plasma by each of the interior and peripheral coil portions exceeds the magnetic flux density coupled to the plasma by the intermediate coil portion. The coil includes two electrically parallel, spiral like windings, each with an interior terminal connected to one output terminal of a matching network and an output terminal connected via a capacitor to another output terminal of the matching network. The capacitor values and the lengths of the windings relative to the plasma RF excitation wavelength are such that current flowing in the coil has maximum and minimum standing wave values in the peripheral and interior coil portions, respectively. The coil and workpiece peripheries have similar rectangular dimensions and geometries.
Abstract:
A plasma processing system for plasma processing of substrates such as semiconductor wafers. The system includes a plasma processing chamber, a substrate support for supporting a substrate within the processing chamber, a dielectric member having an interior surface facing the substrate support, the dielectric member forming a wall of the processing chamber, a gas injector fixed to, part of or removably mounted in an opening in the dielectric window, the gas injector including a plurality of gas outlets supplying process gas into the chamber, and an RF energy source such as a planar or non-planar spiral coil which inductively couples RF energy through the dielectric member and into the chamber to energize the process gas into a plasma state. The arrangement permits modification of gas delivery arrangements to meet the needs of a particular processing regime. In addition, compared to consumable showerhead arrangements, the use of a removably mounted gas injector can be replaced more easily and economically.
Abstract:
A method of depositing a dielectric film on a substrate in a process chamber of an inductively coupled plasma-enhanced chemical vapor deposition reactor. Gap filling between electrically conductive lines on a semiconductor substrate and depositing a cap layer are achieved. Films having significantly improved physical characteristics including reduced film stress are produced by heating the substrate holder on which the substrate is positioned in the process chamber.
Abstract:
A plasma processing system for plasma processing of substrates such as semiconductor wafers. The system includes a plasma processing chamber, a substrate support for supporting a substrate within the processing chamber, a dielectric member having an interior surface facing the substrate support, the dielectric member forming a wall of the processing chamber, a gas injector fixed to, part of or removably mounted in an opening in the dielectric window, the gas injector including a plurality of gas outlets supplying process gas into the chamber, and an RF energy source such as a planar or non-planar spiral coil which inductively couples RF energy through the dielectric member and into the chamber to energize the process gas into a plasma state. The arrangement permits modification of gas delivery arrangements to meet the needs of a particular processing regime. In addition, compared to consumable showerhead arrangements, the use of a removably mounted gas injector can be replaced more easily and economically.
Abstract:
A vacuum plasma processor for treating a workpiece with an RF plasma has a plasma excitation coil including a peripheral portion supplying a substantial magnetic flux density to peripheral portions of the plasma. Additional conducting segments spatially adjacent to and electrically connected to a segment of the peripheral portion supply additional magnetic flux having a substantial magnetic flux density to the plasma peripheral portions. The additional conductor segments are in each of four corners of the coil, being connected electrically in parallel or series to coil conductor segments forming the corners. In another embodiment, the coil includes several nested conducting corner segments. In different embodiments, the corner segments are (1) coplanar with the remainder of the coil and (2) closer to the plasma than the remainder of the coil. The coil includes two electrically parallel, spiral like windings, each with an interior terminal connected to one output terminal of a matching network and an output terminal connected via a capacitor to another output terminal of the matching network. The capacitor values and the lengths of the windings relative to the plasma RF excitation wavelength are such that current flowing in the coil has maximum and minimum standing wave values in the peripheral and interior coil portions, respectively. The coil and workpiece peripheries have similar rectangular dimensions and geometries.
Abstract:
A plasma cleaning method for removing deposits in a CVD chamber. The method includes introducing a cleaning gas comprising a fluorine-based gas into the chamber. A plasma is formed by exposing the cleaning gas to an inductive field generated by resonating a radio frequency current in a RF antenna coil. A plasma cleaning step is performed by contacting interior surfaces of the chamber with the plasma for a time sufficient to remove the deposits on the interior surfaces. An advantage of the plasma cleaning method is that it allows for in-situ cleaning of the chamber at high rates, thereby effectively reducing equipment downtime. The method has particular applicability in the cleaning of a PECVD process chamber.