Abstract:
A power tool includes: a motor; a fan driven by the motor and defining an axis and a radial direction; and a housing for accommodating the motor and the fan therein, the housing including: a peripheral wall formed with a ventilation hole; and a grid partly covering the ventilation hole, the ventilation hole being positioned adjacent to the fan and having a shape defined by a circumferential surface, the grid including at least one elongated portion extending in a longitudinal direction perpendicular to the radial direction, and a distance from the axis of the fan to the circumferential surface is different from a distance from the axis of the fan to one elongated portion in the radial direction of the fan.
Abstract:
A hybrid article is disclosed including a coating disposed on and circumscribing the lateral surface of a core having a core material. The coating includes about 35% to about 95% of a first metallic material having a first melting point, and about 5% to about 65% of a second metallic material having a second melting point lower than the first melting point. The coating is sinter-bonded to the core. A method for forming the hybrid article is disclosed including disposing the core in a die, introducing a slurry having the metallic materials into a gap between the lateral surface and the die, and sintering the slurry, forming the coating. A method for closing an aperture of an article is disclosed including inserting the hybrid article into the aperture, and brazing the hybrid article to the article, welding the aperture with the hybrid article serving as weld filler, or both.
Abstract:
The invention concerns a machine for the chip-forming machining and the measurement of gears and screw-type workpieces. Arranged on a swivel head (6) swivellable about an axis (A) at right angles to the rotary axis of the workpiece (4) are functional units (8a, 8b, 8c, 8d) with machining and measuring tools (10, 12, 14, 15, 17) which are displaceable radially and parallel relative to the swivel axis (A), which said tools can be brought consecutively into engagement with the workpiece (4), thus making possible the application of different tools (10, 12, 14, 15, 17) and machining techniques in the same work set-up without colliding. The work spindle (1) is driven by electric motor either directly or via a gear unit.
Abstract:
A method of manufacturing hubs for flexible gear couplings is disclosed wherein the teeth of said hub are cut while the hub is being moved constantly through the position that the hub would assume relative to the sleeve during operation with the hub shaft misaligned with the sleeve at the maximum angle of misalignment for which the coupling is designed.
Abstract:
The present invention has for its object to make it possible to stop the relative movement of a cutter and a gear blank or change its speed during cutting in a numerical-controlled machine tool for cutting a gear, such as a gear hobbing machine, a gear grinding machine or the like. To perform this, two kinds of pulse distributors, i.e. a synchronization control pulse distributor (152) and a tooth profile forming pulse distributor (153) are provided; the synchronization between the rotation of a cutter (110) and the rotation of a gear blank is provided by the synchronization control pulse distributor (152); and an additional rotation of the rotary shaft of the gear blank necessary for forming the tooth profile of a gear is effected by the tooth profile forming pulse distributor (153).
Abstract:
Apparatus for machining gear teeth has a template control arrangement for varying the tooth flank shape longitudinally of the flanks. This arrangement comprises co-operating wedges, one fixed to the machining tool and the other to a moving tool carrier that makes the working stroke of the tool, the tool being displaceable relative to the carrier by the wedges to vary the tool position radially of the workpiece as it moves along the flanks. The carrier wedge slides in the carrier transversely to the working strokes and the template follower is fixed to slide with it, whereby the variation of the tool radial position is directly proportional to the template profile.
Abstract:
Method for the machining of gear teeth whose tooth flanks deviate from their specified geometry by a machining allowance, wherein the machining allowance is removed through an infeed of at least two infeed steps, each of which is followed by a machining pass with a profiling tool that rotates about a tool axis, wherein for this operation the profiling tool—after it has been set to a position relative to the gear wheel that depends on the angle at which the plane of rotation of the tool which is orthogonal to the tool axis is tilted against the axis of the gear wheel—is brought into engagement with the gear teeth, wherein after each infeed step the material within the resultant engagement area of the tool is removed, wherein after the last infeed step with a tilt angle setting of the profiling tool that is determined by the design angle of the latter, the area of tool engagement extends over the entire flank height, so that the next machining pass will remove the amount of material required to attain the specified geometry, wherein in at least one infeed step which precedes the last infeed step, the profiling tool is set to a tilt angle which deviates from the angle that the tool was designed for and which results in a tool engagement area which, in comparison to the setting at the designed angle, is enlarged in the direction of the flank height.
Abstract:
A method and a device for machining the tooth edges (23, 25) developed between each end face (22, 24) and the tooth flanks (26, 27) of end-cut work wheels (2). The axis of rotation (20) of the spindle that carries the machining tool (21) is displaced around an orthogonal swivel axis (16) relative to the tool axis of rotation so that the cutting directions are opposite to each other with respect to the work wheel (2) in the machining of the lower tooth edges (23) and the upper tooth edges (25).
Abstract:
A method for the manufacture of a toothed gear from a gear blank wherein the gear blank loaded into a machine tool and rotationally driven is machined by a hobbing cutter disposed on a rotationally driven tool shaft and the rough-hobbed gear, once produced, is subsequently cleared of burr by means of a rotationally driven deburring tool by causing it to chamfer the front-end edges of the inter-teeth grooves, wherein the number of revolutions of said deburring tool and rough-machined gear has a constant ratio, wherein the removal of burr is performed on said rough-machined gear invariably loaded on said machine tool in a continuous pass by using a deburring tool which is similar to a side milling cutter, has cutting teeth, and is fixedly disposed for rotation on the shaft of said hobbing cutter, wherein the front-end edges of the inter-teeth grooves are successively machined in the way of a gear hobbing process, and wherein said shaft is changed from the gear hobbing setting over to a burr removal setting.
Abstract:
In the production of a crown wheel which can mesh with a cylindrical pinion if the axes of rotation of the crown wheel and the pinion are not parallel, the workpiece from which the crown wheel is produced and a generating tool rotate at a ratio in the speed of rotation which corresponds to the proportion of the number of passes of the tool and the number of teeth of the crown wheel to be produced, and the tool is brought into engagement with the workpiece and is moved in such a way along the workpiece in a direction parallel to the axis of rotation of the cylindrical pinion that the tool works the tooth flanks of the crown wheel to be produced. When the center point of the tool is moved in a direction parallel to the axis of rotation of the cylindrical pinion which can mesh with the workpiece, and the teeth of which form an angle .beta. with the axis of rotation of the cylindrical pinion, the workpiece acquires an additional rotation which is proportional to the product of this movement and the tangent of the tooth angle .beta. of the cylindrical pinion. During this movement the angle between the axis of rotation of the tool and the plane through the axis of rotation of the cylindrical pinion parallel to the axis of rotation of the workpiece is constant.