摘要:
The present disclosure relates to a purification method of a polymerization solvent used in and recovered from the preparation of a polyolefin resin, which can effectively remove impurities, in particular polyolefin wax, from the polymerization solvent to obtain a purified polymerization solvent with high purity, and can improve energy efficiency.
摘要:
Process for the preparation of styrenic polymers having an improved color stability by anionic polymerization wherein the obtained terminated polymer solution is fed to a dispersing device to which water is added, fed to a buffer vessel and then is impregnated in a static mixer by addition of further water, carbon dioxide and one or more stabilizers.
摘要:
A method for preparing an aqueous polyacrylamide solution is disclosed. The method comprises:—hydrating acrylonitrile in water in presence of a biocatalyst capable of converting acrylonitrile to acrylamide so as to obtain an acrylamide solution,—directly polymerizing the acrylamide solution so as to obtain a polyacrylamide gel, and—directly dissolving the polyacrylamide gel by addition of water so as to obtain an aqueous polyacrylamide solution.
摘要:
The present invention relates to a process for the production of copolymers comprising: (i) forming a reaction mixture comprising an elastomer and a vinyl aromatic compound; (ii) introducing the reaction mixture to a reaction vessel; and (iii) performing a polymerisation reaction wherein steps (i)-(iii) are performed in that order to obtain a copolymer comprising: (a) a phase comprising a reaction product of the elastomer with the vinyl aromatic compound; and (b) a phase comprising a reaction product of the vinyl aromatic compound wherein a sample of the reactor contents is obtained during step (iii) to determine of the formed copolymer: the content of phase (b); and/or●the molecular weight of phase (b) wherein the determination of the content of phase (b) in the formed copolymer and the molecular weight of phase (b) is performed by a method comprising isolation of phase (b) from the sample of the formed copolymer and subjecting the obtained phase (b) to molecular analysis. Such process allows for the determination of the content N of the phase (b) and of the molecular weight thereof in a quick and efficient manner, allowing for adjustment of process parameters such that the production of products that not correspond to the desired product quality is minimised.
摘要:
To provide a fluorinated copolymer which is capable of providing an ion exchange membrane having little adverse effect due to impurities in an alkali chloride aqueous solution on electrolysis of the alkali chloride aqueous solution. To use a fluorinated copolymer of a fluorinated monomer having a carboxylic acid type functional group with a fluorinated olefin, wherein the proportion of components having a common logarithm (log M) of a molecular weight M being from 2.0 to 3.5 is at most 10 mass % per 100 mass % of components having a common logarithm (log M) of a molecular weight M being at least 2.0, contained in a CClF2CF2CClFH soluble content.
摘要:
A fractionation system for a polymerization reactor includes a membrane separation system designed to separate light components, such as unreacted monomer and inerts, from diluent. The membrane separation system may employ one or more membrane modules designed to separate hydrocarbons based on size, solubility, or combinations thereof. The fractionation system also may include a heavies fractionation column designed to separate heavy components, such as unreacted comonomer and oligomers, from the diluent.
摘要:
An improved solution polymerization process wherein energy consumption is reduced comprising: i) injecting ethylene, solvent, catalyst, α-olefins and hydrogen into at least one reactor to produce a polyethylene in a single liquid phase solution; ii) deactivating the single liquid phase solution; iii) passing the deactivated solution into a vapor/liquid separator forming a bottom stream of polyethylene rich solvent and a gaseous overhead stream; iv) passing not more than 40% of the gaseous overhead stream to distillation; v) condensing the remainder of the gaseous overhead stream to form a recycle stream, while generating low pressure steam; vi) passing the recycle stream through a means for oligomer removal; vii) passing the recycle stream through a lights separator; viii) passing the recycle stream through a purification step; ix) collecting the recycle stream in a recycle drum, passing the recycle stream through a pump and injecting a high pressure recycle stream into said reactors.
摘要:
A fractionation system for a polymerization reactor includes a membrane separation system designed to separate light components, such as unreacted monomer and inerts, from diluent. The membrane separation system may employ one or more membrane modules designed to separate hydrocarbons based on size, solubility, or combinations thereof. The fractionation system also may include a heavies fractionation column designed to separate heavy components, such as unreacted comonomer and oligomers, from the diluent.
摘要:
Provided is a method of producing a polyvinyl alcohol resin, wherein the impurities in the resin are removed efficiently with a small amount of a washing liquid. A polyvinyl alcohol obtained after a polymerization step (step S1) and a saponification step (step S2) is washed with a washing liquid consisting of methyl acetate: 1 to 40 parts by mass, methanol: 50 to 98.9 parts by mass and water: 0.1 to 10 parts by mass in a washing step (step S3). The solid matter concentration of the slurry containing the washing liquid then is 1 to 30 mass %.
摘要:
Isotactic polypropylene ethylene-propylene copolymer blends and in-line processes for producing. The blends may have between 1 and 50 wt % of isotactic polypropylene with a melt flow rate of between 0.5 and 20,000 g/10 min and a melting peak temperature of 145° C. or higher, and wherein the difference between the DSC peak melting and the peak crystallization temperatures is less than or equal to 0.5333 times the melting peak temperature minus 41.333° C., and between 50 and 99 wt % of ethylene-propylene copolymer including between 10 wt % and 20 wt % randomly distributed ethylene with a melt flow rate of between 0.5 and 20,000 g/10 min, wherein the copolymer is polymerized by a bulk homogeneous polymerization process, and wherein the total regio defects in the continuous propylene segments of the copolymer is between 40 and 150% greater than a copolymer of equivalent melt flow rate and wt % ethylene polymerized by a solution polymerization process.