摘要:
A rotation measurement system that includes at least two proof masses and at least one pick-off is provided. Each proof mass is driven in a first axis of motion. The at least one pick-off is configured to measure movement of the at least two proof masses in a second axis when the system is rotated about a rotation point and generate Coriolis signals and Euler signals based on the measured movement of the at least two proof masses.
摘要:
Provided is a vibrator device including a vibrator structure body. When the A axis, the B axis, and the C axis are three axes orthogonal to each other, the vibrator structure body includes a vibrator element and a support substrate that is aligned with the vibrator element along the C axis. The vibrator element includes vibrating arms configured to flexurally vibrate along a plane parallel to the A axis and the B axis and along the A axis. The support substrate includes a base that supports the vibrator element, a support that supports the base, and a beam that couples the base and the support. A relationship f0
摘要:
An acceleration sensor includes a substrate, a first movable body that includes a first movable portion and a second movable portion having a rotational moment around a first swinging axis smaller than that of the first movable portion, a second movable body that includes a third movable portion and a fourth movable portion having a rotational moment around a second swinging axis smaller than that of the third movable portion, a first fixed electrode that is disposed on the substrate and faces the first movable portion, a second fixed electrode that faces the second movable portion, a third fixed electrode that faces the third movable portion, a fourth fixed electrode that faces the fourth movable portion, and a coupling portion that couples the first movable body and the second movable body.
摘要:
A vibration element includes a detection signal electrode provided in a detection vibrating arm, a detection signal terminal which is provided in a support portion and electrically connected to the detection signal electrode, and a detection ground terminal provided in the support portion, and the detection ground terminal is disposed between a first connection portion which is a connection portion with a beam portion of the support portion and a second connection portion which is a connection portion with a beam portion, and is provided to extend to the outside of the first connection portion, and the detection signal terminal is provided between the detection ground terminal and an end portion of the support portion.
摘要:
A vibrating-mass gyroscope system includes a substantially planar vibrating-mass including opposite first and second surfaces and electrodes that extend longitudinally in a periodic pattern across the first and/or second surfaces. The electrodes include sets of drive and sense electrodes that are capacitively coupled to respective matching sets of drive and sense electrodes associated with a housing and which are separated from and facing the respective first and second surfaces. A gyroscope controller generates a drive signal provided to one of the array of drive electrodes and the substantially matching array of drive electrodes to provide for in-plane periodic oscillatory motion of the vibrating-mass, and generates a force-rebalance signal that is provided to one of the array of sense electrodes and the substantially matching array of sense electrodes to calculate rotation of the vibrating-mass gyroscope system about an input axis.
摘要:
A rotation rate sensor includes a first rotationally suspended mass that exhibits a first axis of rotation. The first mass includes a first rotation-rate-measuring element that captures a first rate of rotation about the first axis of rotation and that outputs the first rate of rotation in a first signal. The sensor further includes a second rotationally suspended mass that exhibits a second axis of rotation and is arranged parallel to the first axis of rotation. The second mass includes a second rotation-rate-measuring element that captures a second rate of rotation about the second axis of rotation and that outputs the second rate of rotation in a second signal. The sensor further includes a propulsion device that propels the first and second mass and an evaluating device that outputs a difference of the signals as a third rate of rotation to be measured.
摘要:
Systems and methods are disclosed herein for determining rotation. A gyroscope includes a drive frame and a base, the drive frame springedly coupled to the base. The gyroscope includes a drive structure configured for causing a drive frame to oscillate along a first axis. The gyroscope includes a sense mass springedly coupled to the drive frame. The gyroscope includes a sense mass sense structure configured for measuring a displacement of the sense mass along a second axis orthogonal to the first axis. The gyroscope includes measurement circuitry configured for determining a velocity of the drive frame, extracting a Coriolis component from the measured displacement, and determining, based on the determined velocity and extracted Coriolis component, a rotation rate of the gyroscope.
摘要:
Provided herein is a method for determining a bias-compensated inertial rotation rate of a Coriolis vibratory gyroscope (“CVG”). The method comprises determining an initial mode that the CVG is operating; obtaining average uncompensated inertial rotation rate measurements from a previous mode transition period; obtaining average uncompensated bias measurements from the previous mode transition period; determining a first transition between a AGC mode and a FTR mode of a given axis; calculating a first estimate of bias of the CVG based on the first transition that was determined and the average uncompensated bias measurements from the previous mode transition period; and calculating, by a processor, a first bias-compensated inertial rotation rate of the CVG based on the first bias that was calculated and the average uncompensated inertial rotation rate measurements from a previous mode transition period.
摘要:
An vibration element includes a drive vibration section and a detection vibration section, and the detection vibration section has a detection mode 1 and a detection mode 2 as an vibration mode for detection in which the detection vibration section resonates with Coriolis force produced in the drive vibration section and vibrates. A resonance frequency (vibration frequency) of the drive vibration section is higher than a resonance frequency (vibration frequency) in the detection mode 1 and a resonance frequency (vibration frequency) in the detection mode 2, or the vibration frequency of the drive vibration section is lower than the resonance frequency (vibration frequency) in the detection mode 1 and the resonance frequency (vibration frequency) in the detection mode 2.
摘要:
A physical quantity sensor element is provided with a detecting portion, a driving portion, a beam portion which connects a detecting portion and the driving portion to each other, and in which the beam portion includes a branched portion. The beam portion includes two mass portion side beam portions which extend from two position of the driving portion, which are different from each other, and two supporting portion side beam portions which extend from two positions of the detecting portion, which are different from each other, and in which both end portions on the detecting portion side of two mass portion side beam portions are connected to each other, and both end portions on the driving portion side of two supporting portion side beam portions are connected to each other.