HIGHLY-EFFICIENT FULL VAN DER WAALS 1D p-Te/2D n-Bi2O2Se HETERODIODES WITH NANOSCALE ULTRA-PHOTOSENSITIVE CHANNELS

    公开(公告)号:US20240290901A1

    公开(公告)日:2024-08-29

    申请号:US18174359

    申请日:2023-02-24

    摘要: Continuous miniaturization of semiconductor devices is the key to boosting modern electronics development. However, such downscaling strategy has been rarely utilized in photoelectronics and photovoltaics. Here, in this work, a full-vdWs 1D p-Te/2D n-Bi2O2Se heterodiode with a rationally-designed nanoscale ultra-photosensitive channel is reported. Enabled by the dangling bond-free mixed-dimensional vdWs integration, the Te/Bi2O2Se type-II diodes show a high rectification ratio of 3.6×104. Operating with 100 mV reverse bias or in a self-power mode, the photodiodes demonstrated excellent photodetection performances, including high responsivities of 130 A W−1 (100 mV bias) and 768.8 mA W−1 (self-power mode), surpassing most of the reports of other heterostructures. More importantly, a superlinear photoelectric conversion phenomenon is uncovered in these nanoscale full-vdWs photodiodes, in which a model based on the in-gap trap-assisted recombination is proposed for this superlinearity. All these results provide valuable insights in light-matter interactions for further performance enhancement of photoelectronic devices.

    Stacked III-V semiconductor photonic device

    公开(公告)号:US11605745B2

    公开(公告)日:2023-03-14

    申请号:US17209147

    申请日:2021-03-22

    发明人: Gerhard Strobl

    摘要: A stacked III-V semiconductor photonic device having a second metallic terminal contact layer at least formed in regions, a highly doped first semiconductor contact region of a first conductivity type, a very low doped absorption region of the first or second conductivity type having a layer thickness of 20 μm-2000 μm, a first metallic terminal contact layer, wherein the first semiconductor contact region extends into the absorption region in a trough shape, the second metallic terminal contact layer is integrally bonded to the first semiconductor contact region and the first metallic terminal contact layer is arranged below the absorption region. In addition, the stacked III-V semiconductor photonic device has a doped III-V semiconductor passivation layer of the first or second conductivity type, wherein the III-V semiconductor passivation layer is arranged at a first distance of at least 10 μm to the first semiconductor contact region.

    Quantum dot photovoltaic junctions

    公开(公告)号:US11538948B2

    公开(公告)日:2022-12-27

    申请号:US16857687

    申请日:2020-04-24

    摘要: The present disclosure is directed to photovoltaic junctions and methods for producing the same. Embodiments of the disclosure may be incorporated in various devices for applications such as solar cells and light detectors and may demonstrate advantages compared to standard materials used for photovoltaic junctions such as silica. An example embodiment of the disclosure includes a photovoltaic junction, the junction including a light absorbing material, an electron acceptor for shuttling electrons, and a metallic contact. In general, embodiments of the disclosure as disclosed herein include photovoltaic junctions which provide absorption across one or more wavelengths in the range from about 200 nm to about 1000 nm, or from near IR (NIR) to ultra-violet (UV). Generally, these embodiments include a multi-layered light absorbing material that can be formed from quantum dots that are successively deposited on the surface of an electron acceptor (e.g., a semiconductor).