Abstract:
Techniques for mixing, or modulating, a high-frequency, digital communication signal with a low-frequency, analog current loop signal are provided. In certain examples, the techniques allow mixing the signals in a non-AC coupled manner. In certain examples, such mixing techniques can allow for simplified connections between a modem chip and an analog current loop interface chip of an analog I/O module.
Abstract:
A signal generator generates an electrical signal that is sent to an amplifier, which increases the power of the signal using power from a power source. The amplified signal is fed to a sender transducer to generate ultrasonic waves that can be focused and sent to a receiver. The receiver transducer converts the ultrasonic waves back into electrical energy and stores it in an energy storage device, such as a battery, or uses the electrical energy to power a device. In this way, a device can be remotely charged or powered without having to be tethered to an electrical outlet.
Abstract:
A commutating circuit includes a single-ended mixer and a passive network. The single-ended mixer includes a differential local oscillator terminal. The passive network includes a plurality of inductors and a capacitor. The plurality of inductors can be coupled to the differential local oscillator terminal. The plurality of inductors can provide an impedance in accordance with a common mode or a differential mode. The commutating circuit can be implemented via a device, a system and/or a method.
Abstract:
A phase modulation (PM) noise reducer to reduce phase modulation noise of an oscillator, the PM noise reducer including: an amplitude modulation (AM) detector to receive a primary oscillator signal and to produce an AM detector signal based on the primary oscillator signal, the primary oscillator signal including a first phase modulation (PM) noise; a control circuit in electrical communication with the AM detector to receive the AM detector signal and to produce a control signal; a phase shifter in electrical communication with the control circuit to receive the primary oscillator signal and the control signal and to produce a secondary oscillator signal based on the primary oscillator signal and the control signal, the secondary oscillator signal comprising a second PM noise, wherein the second PM noise is less than the first PM noise.
Abstract:
A capacitive sensing system operates according to a method which uses an ADC with a low resolution r, to produce a digital signal with a higher resolution R. The analog signal to be digitized is modulated with a triangular or saw-tooth modulating signal, so that a modulated analog signal is obtained, which is sampled with the ADC. Thereby, digital samples are produced. An average is taken over N (>1) successive digital samples. The triangular or saw-tooth signal is chosen to have a peak-to-peak amplitude corresponding at least approximately to an integer multiple L, with L≧1, of the quantization step size of the ADC. The saw-tooth or triangular signal, furthermore, has a number M, of periods per each sequence of N samples. M and N are chosen such that M>1 and M≠N and such that R=r*N/(k*gcd(N, M)*L), where gcd(M, N) is the greatest common divisor of N and M and where k=2 if the modulating signal is a saw-tooth signal and k=4 if the modulating signal is a triangular signal.
Abstract:
A demodulation device according to the present invention includes a spin device configured to output an oscillation signal; a phase control unit configured to assign a predetermined phase locking characteristic to the spin device, thereby causing the oscillation signal to be tuned to a modulation signal that is input to the spin device; and a detector configured to demodulate the oscillation signal that is output by the spin device and tuned to the modulation signal, thereby restoring information carried on the oscillation signal.
Abstract:
A signal generator generates an electrical signal that is sent to an amplifier, which increases the power of the signal using power from a power source. The amplified signal is fed to a sender transducer to generate ultrasonic waves that can be focused and sent to a receiver. The receiver transducer converts the ultrasonic waves back into electrical energy and stores it in an energy storage device, such as a battery, or uses the electrical energy to power a device. In this way, a device can be remotely charged or powered without having to be tethered to an electrical outlet.
Abstract:
Disclosed are an angle modulator, a transmission apparatus, and a radio communication apparatus that can compensate phase discontinuity when an operational mode of a voltage controlled oscillator is switched. Angle modulator (100) includes phase difference detection section (150) that detects a difference of phases between an input signal of subtractor (141) and an angle modulated signal, using the result of subtraction by subtractor (141) of frequency locked loop circuit (140); correction control section (160) that generates a control signal for compensating that difference of phases based on that difference of phases; correction section (120) that corrects the phase of the angle modulated signal by adding the control signal to an input signal of angle modulator (100), an input signal of loop filter (142), or an input signal of VCO (143) during a predetermined period after VCO (143) switches the operational mode (from time t3 to time t4).
Abstract:
A wideband phase modulator comprises a multiphase generator, a phase selector, and a phase adjuster. The wideband phase modulator is configured to receive an N-bit digital phase-modulating signal comprising a timed sequence of N-bit phase-modulating words, where N is a positive integer representing the bit resolution of the N-bit digital phase-modulating signal. The multiphase generator generates a plurality of coarse carrier phases, all having the same carrier frequency but each offset in phase relative to the other. The M most significant bits of the N-bit phase-modulating words are used to form M-bit phase select words that control the output phase of the phase selector. The phase adjuster performs a precision rotation operation, whereby a selected coarse carrier phase is adjusted so that the phase of the resulting final precision phase-modulated signal more closely aligns with a desired precision phase.
Abstract:
A signal modulator includes: a modulating circuit; a first signal trace block arranged to conduct a first in-phase oscillating signal to the modulating circuit, and conduct a first quadrature-phase oscillating signal to the modulating circuit; and a second signal trace block arranged to conduct a second in-phase oscillating signal to the modulating circuit, and conduct a second quadrature-phase oscillating signal to the modulating circuit, and a phase difference caused by the first signal trace block substantially equals a phase difference caused by the second signal trace block.