Abstract:
Cleave systems for separating bonded wafer structures, mountable cleave monitoring systems and methods for separating bonded wafer structures are disclosed. In some embodiments, the sound emitted from a bonded wafer structure is sensed during cleaving and a metric related to an attribute of the cleave is generated. The generated metric may be used for quality control and/or to adjust a cleave control parameter to improve the quality of the cleave of subsequently cleaved bonded wafer structures.
Abstract:
A multilayer structure is provided, the multilayer structure comprising a semiconductor on insulator structure comprises an insulating layer that enhances the stability of the underlying charge trapping layer.
Abstract:
A multilayer semiconductor on insulator structure is provided in which the handle substrate and an epitaxial layer in interfacial contact with the handle substrate comprise electrically active dopants of opposite type. The epitaxial layer is depleted by the handle substrate free carriers, thereby resulting in a high apparent resistivity, which improves the function of the structure in RF devices.
Abstract:
A fluidized bed reactor includes a reactor core and a stack of liner segments. The stack includes a first liner segment and a second liner segment. The first liner segment includes a first edge having a base surface and an angled surface. The base surface and the angled surface form an obtuse angle. The second liner segment includes a second edge. The first edge and the second edge form a shiplap joint to connect the first liner segment to the second liner segment.
Abstract:
Calibration devices including germanium-68 source material are disclosed. The source material may be a matrix material (e.g., zeolite) in which germanium-68 is isomorphously substituted for central atoms in tetrahedra within the matrix material. Methods for preparing such calibration devices are also disclosed.
Abstract:
A method for preparing a single crystal silicon ingot and a wafer sliced therefrom are provided. The ingots and wafers comprise nitrogen at a concentration of at least about 1x1014 atoms/cm3 and/or germanium at a concentration of at least about 1x1019 atoms/cm3, interstitial oxygen at a concentration of less than about 6 ppma, and a resistivity of at least about 1000 ohm cm.
Abstract translation:提供了用于制备单晶硅锭和从中切割的晶片的方法。 晶锭和晶片包含浓度至少约1×10 14原子/ cm 3的氮和/或浓度至少约1×10 19原子/ cm 3的锗,浓度低于约6ppma的间隙氧,电阻率为 至少约1000欧姆厘米。 p>
Abstract:
Microfluidic chips and cartridges and systems that include such chips are disclosed. In some embodiments, the chips include a microfluidic channel disposed in a substrate with the channel comprising at least one expansion region. The channel is configured to generate a vortex within the at least one expansion region in response to fluid through the microfluidic channel to trap cells or particles. The substrate in which the channel is formed may be relatively rigid to resist deformation.
Abstract:
A method is provided for preparing a semiconductor-on-insulator structure comprising a silicon oxynitride layer having a gradient oxygen concentration.
Abstract:
A multilayer composite structure and a method of preparing a multilayer composite structure are provided. The multilayer composite structure comprises a semiconductor handle substrate having a minimum bulk region resistivity of at least about 500 ohm-cm and the front surface of the single crystal semiconductor handle substrate has a surface roughness of at least about 0.1 micrometers as measured according to the root mean square method over a surface area of at least 30 micrometers by 30 micrometers. The composite structure further comprises a charge trapping layer in contact with the front surface, the charge trapping layer comprising poly crystalline silicon, the poly crystalline silicon comprising grains having a plurality of crystal orientations; a dielectric layer in contact with the charge trapping layer; and a single crystal semiconductor device layer in contact with the dielectric layer.