摘要:
The present invention provides calcium phosphate nano-particles encapsulated with biologically active macromolecules. The particles may be used as carriers of biologically active macromolecule for delivery of the macromolecules. The invention also provides methods of making and using the particles.
摘要:
Methods for preparing a series of mesoporous silicates, such as room-temperature ionic liquid (RTIL)-templated mesoporous silicate particles, with various particle morphologies are provided. Methods for preparing silicate particles with antimicrobial agents within the MSN pores is also provided. The particles can be used as controlled-release nanodevices to deliver antimicrobial agents.
摘要:
The invention relates to a method for producing single-wall or multiple-wall carbon nanotubes (CNTs) that are ferromagnetically filled in part with iron, cobalt, nickel, an alloy thereof, or an alloy of said elements and platinum while carrying biomolecules which are enclosed within the tube and/or are associated with the outer surface of the tube. In a preferred embodiment of the invention, the disclosed nanotubes can contain two or several active substances in the tube which are released one after another when used in the body. The invention further relates to the use of the inventive carbon nanotubes that are ferromagnetically filled in part for diagnostic and therapeutic purposes, especially for the diagnosis and treatment of tumors.
摘要:
A flowable, biodegradable endovascular embolic composition effective for embolizing a vascular defect consisting essentially of: (a) a biocompatible, biodegradable polymer or polymeric material forming composition; (b) a biocompatible embolic solvent for the polymer or polymer forming composition capable of diffusion into mammalian tissue; (c) biocompatible magnetic particles responsive to a magnetic field; wherein: the polymer or polymeric forming material and solvent are present in the composition in amounts and relative proportions such that (1) the composition is deliverable to a vascular defect site and (2) upon delivery to the site, solidifies into an embolic mass; and the magnetic particles are present in the composition in an amount sufficient to enable the composition being deliverable to the vascular site by a magnetic field. Also disclosed are methods and articles of manufacture embodying the above-described composition.
摘要:
This invention relates to a composition of matter comprising an immobilized metal-ion sequestrant/antimicrobial comprising a metal-ion sequestrant that has a high stability constant for a target metal ion and that has attached thereto an antimicrobial metal-ion, wherein the stability constant of the metal-ion sequestrant for the antimicrobial metal-ion is less than the stability constant of the metal-ion sequestrant for the target metal-ion. It further relates to articles comprising said composition and to a method of removing target metal-ions from an environment and releasing antimicrobial metal ions into the environment comprising contacting the environment with said composition
摘要:
The invention provides a three-dimensional construct including a polymeric matrix and a nanoparticle as shown in Fig. 1 having a diameter of about 5 nm to about 10 microns, wherein the nanoparticle is (a) coated with at least two monomolecular layers each carrying biological information and (b) dispersed in the polymeric matrix at a density of at least 0.01 vol%. The invention further provides a method of presenting biological information to a cell or a tissue and thereby affecting at least one parameter of the cell or the tissue, the method involves providing the three-dimensional construct and contacting it with the cell or the tissue to present the biological information and thereby affecting at least one characteristic of the cell or the tissue. In certain embodiments, the diameter, the biological information and the density are selected to affect at least one characteristic of the cell or the tissue.
摘要:
Medical articles (for instance, a drug delivery patch or an implantable or insertable medical device) are provided that comprise a release region, which in turn comprises (a) polymeric carrier comprising a polymer (for instance, a hydrophobic polymer) and (b) drug loaded nanoparticles, which are dispersed within the polymeric carrier. The drug loaded nanoparticles comprise a layered silicate material (for instance synthetic or naturally occurring smectite clay nanoparticles) and a therapeutic agent (for instance, a hydrophilic or hydrophobic therapeutic agent). Also described are methods of releasing a therapeutic agent to a patient using such medical articles, and methods of making such medical articles.
摘要:
The present invention relates to intraocular drug delivery for treating ocular diseases. Particularly, the invention relates to particles useful for the delivery of certain pharmacologically active agents to treat ocular diseases. The particles contain calcium phosphate core particles, particularly nanoparticles, as delivery agents and adjuvants. The invention also relates to methods of making such particles and to methods of treating ocular disease by delivery of a therapeutic drug to an ocular surface using the particles of this invention. The invention further relates to methods of regulating ocular pressure using certain formulations according to the present invention.
摘要:
The invention is directed to nanoparticulate compositions comprising inorganic cores and methods of making and using such compositions. The nonoparticulate compositions comprise at least one type of organic core having adsorbed or bound to the surface thereof at least one type of active molecule. The compositions exhibit superior properties as compared to conventional micronized and nanoparticulate active agent formulations.
摘要:
A drug delivery system comprising a contact lens having dispersed therein as nanoparticles having a particle size less than about 50 nm, an ophthalmic drug nanoencapsulated in a material from which said ophthalmic drug is capable of diffusion into and migration through said contact lens and into the post-lens tear film when said contact lens is placed on the eye.