Abstract:
An apparatus and method, for selective thermal treatment of tissue, below the surface, while avoiding injury to the superficial layers of the tissue. The apparatus comprises a reflective beam conversion system for providing a pre-selected therapeutic dose of light energy of optimal spectrum and optimal pulse duration to a confined target volumes at predetermined depth under the tissue surface, while reducing the thermal exposure of the surface of the tissue, and the overlying and surrounding tissues. The method is advantageous for treating a variety of medical and dermatological conditions in a safer and more effective manner.
Abstract:
Laser processing equipment (1, 40, 101) is provided with a stage (3, 300) for placing an object (2, 102) to be processed, an irradiating means (4, 104) for projecting a laser beam (P) to a surface of the object, an optical system (6), which splits the laser beam (P) into a plurality of luminous fluxes (P') and collects the light on a surface or inside of the object (4, 104) as a plurality of spots (S), and a moving means (7, 107) for relatively moving the spots (S) in horizontal direction to the object (2, 102).
Abstract:
A method for pre-calibration of a laser micro-machining system to achieve alignment tolerances greater than the diffraction limit of an illumination wavelength. A blank is mounted in the system, such that the beam spot is incident on its top surface. Two marks are ablated in the blank. The centers of the marks are a predetermined distance apart. The blank is illuminated with light and imaged with a digital camera. The resulting image is scaled such that each pixel has a width corresponding to a distance on the imaged surface, which is less than half of the illumination wavelength. The number of pixels between the centers of the marks determines this distance. The locations of the marks in the image are determined and a coordinate system is defined for surfaces imaged by the digital camera. Coordinates of the beam spot in this coordinate system are also determined using the second mark.
Abstract:
An apparatus for cutting pipes or profiled elements with high working precision, comprising conveyor means adapted to convey at least one slide that is adapted to support a pipe to be cut; at least one cutting assembly, which is mounted on the slide and is rigidly coupled to the pipe; at least one distribution system, which is adapted to send at least one power laser beam to the cutting assembly, the cutting assembly being provided with means adapted to direct the power laser beam onto the pipe to be cut, in order to cut the pipe.
Abstract:
Die vorliegende Erfindung betrifft eine Aufteilungsvorrichtung für Lichtstrahlen umfassend mindestens ein Strahlteilermittel (20, 21, 22), das einen ersten Anteil eines aufzuteilenden Lichtstrahles (26) reflektieren und einen zweiten Anteil des Lichtstrahls (26) hindurchtreten lassen kann, derart, dass der Lichtstrahl (26) in mindestens zwei Anteile aufgeteilt wird, wobei die Aufteilungsvorrichtung weiterhin mindestens ein Polarisationsdrehmittel (23, 24, 25) umfasst, das die Polarisation des aufzuteilenden Lichtstrahls (26) drehen kann, und wobei das mindestens eine Strahlteilermittel (20, 21, 22) als polarisationsselektives Strahlteilermittel ausgeführt ist.
Abstract:
Die Erfindung betrifft ein Laserschweißverfahren und eine Laserschweißanordnung (1) zum Schweißen von ein oder mehreren Karosseriebauteilen (7) mittels ein oder mehrerer Laserschweißköpfe (2). Die Bauteile (7) werden beim Schweißen von ein oder mehreren Bewegungseinrichtungen (8), z.B. mehrachsigen Robotern (10), in einer mehrachsigen Relativbewegung gegenüber dem Laserschweißkopf (2) geführt und bewegt. Der Laserschweißkopf (2) ist als Remote-Laser ausgebildet und mit Distanz zum Bauteil (7) stationär oder mittels einer Bewegungseinrichtung (11) instationär angeordnet.
Abstract:
A silicon crystallization system includes a beam generator generating a laser beam, first and second optical units for controlling the laser beam from the beam generator; and a stage for mounting a panel including an amorphous silicon layer to be polycrystallized by the laser beam from the optical units. The first optical unit makes the laser beam have a transverse edge and a longitudinal edge longer than the transverse edge, and the second optical unit makes the laser beam have a transverse edge and a longitudinal edge shorter than the transverse edge.