Abstract:
Ein Transportbehälter (1 ) für Helium, mit einem Innenbehälter (6) zum Aufnehmen des Heliums (He), einem Außenbehälter (2), in dem der Innenbehälter (6) aufgenommen ist, und einer zwischen dem Innenbehälter (6) und dem Außenbehälter (2) vorgesehenen Isoliereinrichtung (13) zum thermischen Isolieren des Innenbehälters (6), wobei eine dem Innenbehälter (6) abgewandte Außenseite (26) des Außenbehälters (2) zumindest teilweise mit einer superhydrophilen Beschichtung (27) beschichtet ist.
Abstract:
Полезная модель относится к технике изготовления сосудов высокого давления для хранения и транспортировки жидкостей и газов, используемых в модулях пожаротушения. Сосуд для хранения и транспортировки жидкостей и газов, используемых в модулях пожаротушения, содержащий выполненный из стали корпус с антикоррозионным покрытием внутренней поверхности, выполнен с теплоизоляционным покрытием 5 на его наружной поверхности, содержащем тонкостенные керамические вакуумированные микросферы, диспергированные в полимерное связующее. Обеспечивается возможность эксплуатации при повышенных температурах.
Abstract:
Pressure vessels formed from fiber composites are described. The fiber composites include fibers impregnated with a resin system containing surface-modified nanoparticles dispersed in a curable matrix resin.
Abstract:
L'invention se rapporte à un cryostat (1) pour l'étude d'échantillons sous vide, le cryostat comportant un doigt froid (2) pourvu d'une partie doigt 5 ainsi que d'une partie embase (10) solidaire de la partie doigt, le cryostat comprenant aussi un support d'échantillon (32) monté sur une extrémité libre de refroidissement de la partie doigt, cette partie doigt étant placée dans une enceinte sous vide (4). 10 L'enceinte sous vide est partiellement délimitée par une pièce creuse (6) réalisée d'un seul tenant et définissant une cavité ouverte (46) à ouverture unique (44) traversée par la partie doigt, le support d'échantillon se trouvant à l'intérieur de cette cavité 15 ouverte (46). L'enceinte est également délimitée par un corps de cryostat (8) dont une surface extérieure cylindrique de section circulaire (36) coopère avec un dispositif de mise en rotation (62).
Abstract:
A resilient multi-layer container is configured to receive a quantity of hyperpolarized noble fluid such as gas and includes a wall with at least two layers, a first layer with a surface which minimizes contact-induced spin-relaxation and a first or second layer which is substantially impermeable to oxygen. The container is especially suitable for collecting and transporting He. The resilient container can be formed of material layers which are concurrently responsive to pressure such as polymers, deuterated polymers, or metallic films. The container can include a capillary stem and/or a port or valve isolation means to inhibit the flow of gas from the main volume of the container during transport. The resilient container can be configured to directly deliver the hyperpolarized noble gas to a target interface by deflating or collapsing the inflated resilient container. In addition, single layer resilient containers with T1's of above 4 hours for Xe and above 6 hours for He include materials with selected relaxivity values. In addition, a bag with a port fitting or valve member and one or more of a capillary stem and port isolation means is configured to minimize the depolarizing effect of the container valve or fitting(s). Also disclosed is a method for determining the gas solubility in an unknown polymer or liquid using the measured relaxation time of a hyperpolarized gas.
Abstract:
A compact portable transport unit (10) for shipping hyperpolarized noble gases and shielding same from electromagnetic interference and/or external magnetic fields includes a means for shifting the resonance frequency of the hyperpolarized gas outside the bandwidth of typical frequencies associated with prevalent time-dependent fields produced by electrical sources. Preferably the transport unit includes a magnetic holding field which is generated from a solenoid (20) in the transport unit (10). The solenoid (20) includes a plurality of coil segments and is sized and configured to receive the gas chamber of a container (30). The gas container (30) is configured with a valve (32), a spherical body (33), and an extending capillary stem (35) between the valve and the body. The gas container (30) or hyperpolarized product container can also be formed as a resilient bag. The distribution method includes positioning a multi-bolus container within the transport unit to shield it and transporting same to a second site remote from the first site and subsequently dispensing into smaller patient sized formulations which can be transported (shielded) in another transport unit to yet another site.
Abstract:
The present disclosure provides a pressure vessel (10) (sometimes known as a composite overwrapped pressure vessel or "COPV") comprising carbon fiber (20) (such as carbon fiber (20) filaments) wrapped around a tank liner (30).
Abstract:
Pressure vessels formed from fiber composites are described. The fiber composites include fibers impregnated with a resin system containing surface-modified nanoparticles dispersed in a curable matrix resin.
Abstract:
Um einen Gasbehälter (1) zur Aufnahme eines Schutzgases in elektrischen Schaltanlagen der Energieverteilung mit einem nicht transparenten Gehäuseabschnitt (2) und einem Sichtfenster (6), das eine in den nicht transparenten Gehäuseabschnitt (2) eingebrachte Durchgangsöffnung (3) gasdicht verschliesst, bereitzustellen, der kostengünstig und auch bei größeren Temperaturschwankungen zuverlässig dichtend ist, wird vorgeschlagen, dass das Sichtfenster (6) an den nicht transparenten Gehäuseabschnitt (2) angeformt ist.